### Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Bilimoria KY, Chung JW, Hedges LV, et al. National cluster-randomized trial of duty-hour flexibility in surgical training. N Engl J Med 2016;374:713-27. DOI: 10.1056/NEJMoa1515724

#### SUPPLEMENTARY APPENDIX

National Cluster-Randomized Trial of Duty Hour Flexibility in Surgical Training

### **CONTENTS**

| A. Study Design – Additional Details                                           | 3  |
|--------------------------------------------------------------------------------|----|
| • FIGURE S1: FIRST Trial CONSORT Diagram                                       | 7  |
| B. Study Arm Adherence                                                         | 8  |
| C. Study Endpoints                                                             | 10 |
| D. Statistical Analysis – Additional Details                                   | 14 |
| E. Results Tables                                                              | 20 |
| F. Note on ABSITE Resident Survey Response Rates                               | 38 |
| G. Patient Outcomes Risk Adjustment Variables                                  | 51 |
| H. Comparison of Enrolled vs Non-Enrolled Programs and Hospitals               | 63 |
| I. Number of Valid Observations for Program, Hospital, and Patient Data        | 65 |
| J. Comparison of Population Averaged and Conditional Estimates for Patient and | 67 |
| Resident Outcomes                                                              |    |
| K. Institutional Review Board Office Determination                             | 72 |
| L. Acknowledgement of all FIRST Trial Program Directors, Program Coordinators, | 81 |
| Surgeon Champions, and Surgical Clinical Reviewers                             |    |

### A. STUDY DESIGN – ADDITIONAL DETAILS

### **Additional Information on ACS NSQIP**

The American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP; <u>www.acsnsip.org</u>) is the largest and most prominent multispecialty surgical outcomes assessment program.<sup>1,2</sup> The structure of ACS NSQIP, including sampling strategy, data abstraction procedures, variables collected, risk-adjustment methodology, and outcomes collected, have been described extensively.<sup>1-15</sup> Briefly, the program collects detailed data regarding patient demographics, preoperative comorbidities and other risk factors, laboratory values, and operative details to allow comprehensive risk adjustment for hospital quality comparisons on more than 30 postoperative outcomes and some process measures.<sup>1</sup>

To standardize data collection across institutions, ACS NSQIP data are abstracted at each site by trained, certified, and audited surgical clinical reviewers (SCRs) who use highly standardized data definitions.<sup>11</sup> Patients are followed for complications for 30 days after the *index* operation irrespective of whether an inpatient, discharged to their home or another facility, or readmitted to another hospital.<sup>16</sup> The SCRs examine inpatient records, review outpatient physician office charts, and even contact patients directly to accurately assess postoperative outcomes.<sup>13,17</sup> ACS NSQIP data are clinical data collected by a trained abstractor for quality improvement, and these data are generally more accurate than administrative data for assessing postoperative complications.<sup>18-20</sup> The data have been shown to have excellent inter-rater reliability. Participating hospitals must ensure complete follow-up for 95% of cases. ACS NSQIP performs regular and event-driven audits to assess data integrity.

Most data points (except labs) are required before a hospital can submit a case to ACS NSQIP, thus there is very little missing data – typically 0% for non-lab values. All patient outcomes are required, so there are no missing patient outcome data. ACS NSQIP imputes data for 38 important patient characteristics and laboratory values. Missing data were imputed by ACS NSQIP using Buck's method, and this has been shown to be comparable to multiple imputation when modeling postoperative outcomes using ACS NSQIP data.<sup>14</sup>

For the purposes of the trial, we did not perform additional data audits, as the standard ACS NSQIP data audit process is thorough, well-tested, and thought to be sufficient.

- Hall BL, Hamilton BH, Richards K, Bilimoria KY, Cohen ME, Ko CY. Does surgical quality improve in the American College of Surgeons National Surgical Quality Improvement Program: an evaluation of all participating hospitals. Ann Surg 2009;250:363-76.
- 2. Hall BL, Richards K, Ingraham A, Ko CY. New approaches to the National Surgical Quality Improvement Program: the American College of Surgeons experience. Am J Surg 2009;198:S56-62.
- 3. Werner RM, Bradlow ET. Relationship between Medicare's hospital compare performance measures and mortality rates. JAMA : the journal of the American Medical Association 2006;296:2694-702.
- 4. Khuri SF, Daley J, Henderson W, et al. The Department of Veterans Affairs' NSQIP: the first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care. National VA Surgical Quality Improvement Program. Ann Surg 1998;228:491-507.
- 5. Daley J, Khuri SF, Henderson W, et al. Risk adjustment of the postoperative morbidity rate for the comparative assessment of the quality of surgical care: results of the National Veterans Affairs Surgical Risk Study. J Am Coll Surg 1997;185:328-40.
- 6. Khuri SF, Henderson WG, Daley J, et al. The patient safety in surgery study: background, study design, and patient populations. J Am Coll Surg 2007;204:1089-102.
- 7. Davis CL, Pierce JR, Henderson W, et al. Assessment of the reliability of data collected for the Department of Veterans Affairs national surgical quality improvement program. J Am Coll Surg 2007;204:550-60.

- Khuri SF, Henderson WG, Daley J, et al. Successful implementation of the Department of Veterans Affairs' National Surgical Quality Improvement Program in the private sector: the Patient Safety in Surgery study. Ann Surg 2008;248:329-36.
- 9. Dimick JB, Ghaferi AA, Osborne NH, Ko CY, Hall BL. Reliability Adjustment for Reporting Hospital Outcomes With Surgery. Ann Surg 2012.
- 10. Raval MV, Cohen ME, Ingraham AM, et al. Improving American College of Surgeons National Surgical Quality Improvement Program risk adjustment: incorporation of a novel procedure risk score. J Am Coll Surg 2010;211:715-23.
- 11. Shiloach M, Frencher SK, Jr., Steeger JE, et al. Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program. J Am Coll Surg 2010;210:6-16.
- 12. Birkmeyer JD, Shahian DM, Dimick JB, et al. Blueprint for a new American College of Surgeons: National Surgical Quality Improvement Program. J Am Coll Surg 2008;207:777-82.
- 13. Cohen ME, Dimick JB, Bilimoria KY, Ko CY, Richards K, Hall BL. Risk adjustment in the American College of Surgeons National Surgical Quality Improvement Program: a comparison of logistic versus hierarchical modeling. J Am Coll Surg 2009;209:687-93.
- 14. Hamilton BH, Ko CY, Richards K, Hall BL. Missing data in the American College of Surgeons National Surgical Quality Improvement Program are not missing at random: implications and potential impact on quality assessments. J Am Coll Surg 2010;210:125-39 e2.
- 15. Ingraham AM, Richards KE, Hall BL, Ko CY. Quality improvement in surgery: the American College of Surgeons National Surgical Quality Improvement Program approach. Advances in surgery 2010;44:251-67.
- 16. Bilimoria KY, Cohen ME, Ingraham AM, et al. Effect of postdischarge morbidity and mortality on comparisons of hospital surgical quality. Ann Surg 2010;252:183-90.
- 17. Cohen ME, Ko CY, Bilimoria KY, et al. Optimizing ACS NSQIP Modeling for Evaluation of Surgical Quality and Risk: Patient Risk Adjustment, Procedure Mix Adjustment, Shrinkage Adjustment, and Surgical Focus. J Am Coll Surg 2013.
- 18. Lawson EH, Hall BL, Louie R, et al. Association Between Occurrence of a Postoperative Complication and Readmission: Implications for Quality Improvement and Cost Savings. Ann Surg 2013;258:10-8.
- 19. Lawson EH, Louie R, Zingmond DS, et al. A comparison of clinical registry versus administrative claims data for reporting of 30-day surgical complications. Ann Surg 2012;256:973-81.
- 20. Haut ER, Pronovost PJ, Schneider EB. Limitations of administrative databases. JAMA : the journal of the American Medical Association 2012;307:2589; author reply -90.

#### **Planned Interim Analysis**

The FIRST Trial carried out a planned interim analysis in January 2015 to assess whether any differences could be observed in patient outcomes between study arms. Interim evaluation was based on a comparison of 30-day postoperative death or serious morbidity (primary patient outcome) across study arms using ACS NSQIP data from FIRST Trial hospitals spanning surgical cases from July through August 2014, as cases are not available for analysis until at least 120 days after the date of surgery.

The FIRST Trial Data Safety and Monitoring Board reviewed a confidential Interim Report in February 2015 and determined that the FIRST Trial could safely continue.

#### **Statistical Significance Levels**

The overall level of statistical significance for the study was set at p<0.05. Significance levels for the final analysis of patient outcomes (as reported in this paper) were adjusted to account for one planned interim analysis of patient outcomes that was carried out halfway through the study period (discussed above). Using the

method of Lan and DeMets (1983), we adjusted the p-value for one-sided tests in final analyses to p<0.04 in order to maintain an overall significance level of p<0.05 for the entire study.

The level of statistical significance for hypothesis tests concerning resident outcomes remained p<0.05 because resident outcomes could not be studied in the interim analysis.

#### **Statistical Power and Sample Size**

The FIRST Trial was powered on the basis of the primary patient outcome: 30-day postoperative death or serious morbidity.

The baseline rate of 30-day postoperative death or serious morbidity was 9.94% in 2012 and 9.82% in 2013 using data on general surgery ACS NSQIP cases from sample hospitals in 2012 and 2013. The study team defined the noninferiority margin to be an absolute difference of 1.25 percentage points in rates of 30-day postoperative death or serious morbidity, based on clinical judgment, trends in this ACS NSQIP outcome measure, power calculations, and intra-cluster correlations. Variance components models of 30-day postoperative death/serious morbidity were estimated with program-level and hospital-level random effects using these data. Models were estimated with and without stratifying programs by tertiles of 2012 observed rates of death or serious morbidity. The final variance components model that informed our power calculations was a 3-level hierarchical logistic regression model that included adjustment for baseline rates (in the form of tertiles of program-level rates of 30-day postoperative death/serious morbidity) with hospital (level 2) and residency program (level 3) random intercepts. Level-2 (hospital) and Level-3 (program) variances were estimated to be 0.062 and 2.44e-12, respectively.

Given baseline rates and estimated variance components, we calculated minimum sample size requirements to be 45 programs per arm with an average of 1.1 hospitals per program and 950 patients per hospital in order to obtain at least 80% power to detect a 1.25 percentage point absolute difference between study arms in rates of 30-day postoperative death or serious morbidity with  $\alpha$ =0.04. Additional details regarding power calculations are in the Study Protocol.

#### Randomization

The unit of randomization was the residency program. To improve statistical efficiency, we implemented a stratified, cluster-randomization strategy to balance residency programs across study arms with respect to key program characteristics. Using 2013 ACS NSQIP data, we calculated program-level aggregate 30-day postsurgical death/serious morbidity rates as the average of hospital-level rates across hospitals within a residency program. Residency programs in the study were stratified into three groups based on their tertile ranking with respect to rates of 30-day postoperative death/serious morbidity. Table S1 shows the mean and standard deviation for rates of 30-day postoperative death/serious morbidity by tertile. Table S2 shows the distribution of enrolled programs, hospitals and NSQIP cases from the final analytic sample across randomization tertiles.

Each residency program was assigned a unique, randomly-generated integer between 1,000 and 9,999 using a random-number generator. Within each stratum, residency programs were ordered in ascending order according to their randomly-assigned number. We created separate lists for each stratum containing only the randomly-generated number corresponding to programs within that stratum. These blinded lists were given to two Study Team members who alternately assigned the letters "A" and "B" to each number in each list. A coin

toss determined study arm assignment of letters. A third Study Team member matched the random numbers back to program identifiers.

Residency Program Directors and Program Coordinators were notified of their study arm assignment by electronic mail on April 1, 2014.

# TABLE S1. Definition of Tertiles of 2013 Rates of 30-day Postoperative Death or Serious Morbidity: Variable Used for Stratified Randomization

| Tertile | N Programs | Observed Rate of 30-Day Postoperative Death or Serious<br>Morbidity |  |
|---------|------------|---------------------------------------------------------------------|--|
|         |            | Mean (SD)                                                           |  |
| 1       | 39         | 6.42% (1.40)                                                        |  |
| 2       | 39         | 8.98% (0.77)                                                        |  |
| 3       | 38         | 12.97% (2.48)                                                       |  |

NOTE: The data used to define tertiles of 30-day postoperative death or serious morbidity for stratified randomization came from earlier data collected by the ACS NSQIP.

TABLE S2. Distribution of General Surgery Programs, Hospitals and ACS NSQIP Cases in Final Analytic Dataset by Tertiles of 2013 Rates of 30-day Postoperative Death or Serious Morbidity (Variable Used for Stratified Randomization)

| Unit               | Total N | Frequency (%)  |                |                |                |
|--------------------|---------|----------------|----------------|----------------|----------------|
|                    |         | No Baseline    | Tertile 1      | Tertile 2      | Tertile 3      |
|                    |         | Data Available |                |                |                |
| General Surgery    |         |                |                |                |                |
| Residency Programs |         |                |                |                |                |
| Standard Policy    | 58      | 7 (12.07%)     | 19 (32.76%)    | 15 (25.86%)    | 17 (29.31%)    |
| Flexible Policy    | 57      | 5 (8.77%)      | 17 (29.82%)    | 16 (28.07%)    | 19 (33.33%)    |
| Total (Both Arms)  | 115     | 12 (10.43%)    | 36 (31.30%)    | 31 (26.96%)    | 36 (31.30%)    |
|                    |         |                |                |                |                |
| Hospitals          |         |                |                |                |                |
| Standard Policy    | 70      | 9 (12.86%)     | 23 (32.86%)    | 20 (28.57%)    | 18 (25.71%)    |
| Flexible Policy    | 78      | 5 (6.41%)      | 24 (30.77%)    | 25 (32.05%)    | 24 (30.77%)    |
| Total (Both Arms)  | 148     | 14 (9.46%)     | 47 (31.76%)    | 45 (30.41%)    | 42 (28.38%)    |
|                    |         |                |                |                |                |
| ACS NSQIP General  |         |                |                |                |                |
| Surgery Cases      |         |                |                |                |                |
| Standard Policy    | 65,849  | 8054 (12.23%)  | 22505 (34.18%) | 17648 (26.80%) | 17642 (26.79%) |
| Flexible Policy    | 72,842  | 4262 (5.85%)   | 21080 (28.94%) | 21909 (30.08%) | 25591 (35.13%) |
| Total (Both Arms)  | 138691  | 12316 (8.88%)  | 43585 (31.43%) | 39557 (28.52%) | 43233 (31.17%) |

#### FIGURE S1. FIRST Trial CONSORT Diagram



\* The exclusions were applied in this order, so each category is conditional on the prior category

\*\*Ineligible due to being a new program or due to standing with ACGME (e.g., on probation due to duty hour violations)
\*\*\* In the final analysis of patient outcomes, two hospitals were excluded. One Standard Policy hospital was dropped by ACS
NSQIP due to inadequate 30-day follow up of postoperative outcomes. Another hospital (Flexible Policy) changed their version of
ACS NSQIP to one where the variables were no longer compatible for analysis. As this was the only hospital from that residency program, one Flexible Policy program was lost.

#### **B. STUDY ADHERENCE**

The FIRST Trial was designed and executed as a pragmatic trial, with no enforcement of adherence to study arm conditions. However, all 117 FIRST Trial general surgery residency Program Directors were surveyed in an effort to determine the extent to which programs adhered to study arm conditions.

Program adherence in the FIRST Trial was defined on the basis of Program Directors' responses to the following item in the 2015 FIRST Trial Program Directors Survey (Exhibit 2).

Which of the following statements are consistent with the formal duty hour policies and procedures for the general surgery residents at your institution during the FIRST Trial [2014-2015]. Please check all boxes that apply.

- Definition of the periods of the per
- D PGY-2 resident duty periods can exceed 28 hours (24 hours + 4 hours for transition)
- □ Residents do not require 14 hours off after continuous in-house duty of 24 hours
- □ Residents do not require 8-10 hours off between shifts
- $\Box$  None of the above apply to the formal policy at our institution

Table S3 reports the frequency of reported departures from ACGME duty hour standards by FIRST Trial study arm. All but two programs in the Standard Policy arm adhered to the study conditions of their assigned arm. Two programs randomized to the Standard Policy arm indicated that their formal institutional duty hour policies in 2014-15 permitted residents fewer than 14 hours off following 24-hour in-house duty.

All (100%) Program Directors in Flexible Policy programs reported departures from ACGME standards regarding maximum shift length for PGY1 residents. A large proportion of program directors in Flexible Policy programs also reported departures from ACGME standards regarding maximum shift length for PGY2+ residents (84%), minimum time off after 24-hour shifts (88%), and minimum time off between shifts (81%).

| Duty Hour Requirement                                           | Standard<br>Policy<br>N=59 | Flexible Policy<br>(%)<br>N=58 |
|-----------------------------------------------------------------|----------------------------|--------------------------------|
|                                                                 | programs                   | programs                       |
| PGY-1 resident duty periods can exceed 16 hours, n (%)          | 0 (0%)                     | 58 (100%)                      |
| PGY-2 resident duty periods can exceed 28 hours (24 hours + 4   | 0 (0%)                     | 49 (84%)                       |
| hours for transition), n (%)                                    |                            |                                |
| Residents do not require 14 hours off after continuous in-house | 2 (3%)                     | 51 (88%)                       |
| duty of 24 hours, n (%)                                         |                            |                                |
| Residents do not require 8-10 hours off between shifts, n (%)   | 0 (0%)                     | 47 (81%)                       |

# TABLE S3. FIRST Trial Program Director's Survey (Summer 2015) Responses Regarding Departures from ACGME Duty Hour Standards during the 2014-2015 Academic Year

Table S4 reports the number of departures from ACGME duty hour standards by FIRST Trial study arm. Among programs randomized to Standard Policy, 57 (97%) reported no departures from ACGME standards while two programs (3%) reported a single departure from ACGME standards. Among programs randomized to Flexible Policy, all (100%) reported at least one departure from ACGME standards; 3 (5%) reported one departure; 6 (10%) reported two departures; 6 (10%) reported three departures; and 43 (74%) reported four departures.

| Number of Departures from ACGME Duty Hour<br>Standards (maximum=4) | Standard Policy<br>N=59 programs | Flexible Policy (%)<br>N=58 programs |
|--------------------------------------------------------------------|----------------------------------|--------------------------------------|
| Zero                                                               | 57 (97%)                         | 0 (0%)                               |
| One                                                                | 2 (3%)                           | 3 (5%)                               |
| Тwo                                                                | 0 (0%)                           | 6 (10%)                              |
| Three                                                              | 0 (0%)                           | 6 (10%)                              |
| Four                                                               | 0 (0%)                           | 43 (74%)                             |

TABLE S4. Number of Departures from ACGME Duty Hour Standards during the 2014-2015 Academic Year, Based on FIRST Trial Program Director's Survey (Summer 2015)

An *adherent program* was defined as a program that adhered to the study conditions of its assigned study arm. An adherent program in the Standard Policy arm was defined as a program that (a) was randomized to Standard Policy and (b) reported zero departures from current ACGME duty hour standards.

An adherent program in the Flexible Policy arm was defined as a program that (a) was randomized to Flexible Policy and (b) reported *at least one* departure from ACGME duty hour standards. Programs randomized to Flexible Policy were simply *permitted* to depart from a circumscribed set of ACGME duty hour standards (maximum shift length for PGY1 residents, maximum shift length for PGY2+ residents, minimum time off following 24-hour shifts, and/or minimum time off between shifts). Programs randomized to Flexible Policy *were not mandated* to depart from these ACGME duty hour standards – they merely had the sanctioned option to do so. Thus, a strict definition of adherence in the Flexible Policy arm identifies adherent programs as those which instituted at least one departure from ACGME standards within their institutional duty hour policies during the 2014-2015 year.

Table S5 shows program adherence status by FIRST Trial study arm assignment. Ninety-seven percent of Standard Policy programs were adherent. All programs in Flexible Policy were adherent.

| Adherence Status | Standard Policy | Flexible Policy | Total          |
|------------------|-----------------|-----------------|----------------|
|                  | N=59 programs   | N=58 programs   | N=117 programs |
| Not Adherent     | 2 (3%)          | 0 (0%)          | 2 (2%)         |
| Adherent         | 57 (97%)        | 58 (100%)       | 115 (98%)      |

#### TABLE S5. FIRST Trial Study Arm Adherence Rates

#### C. STUDY ENDPOINTS

#### **C.1. PATIENT ENDPOINTS**

Table S6 lists the 11 patient endpoints that were studied in the FIRST Trial, along with brief definitions.

The primary patient endpoint in the FIRST Trial was the ACS NSQIP outcome, *30-Day Postoperative Death or Serious Morbidity*. The FIRST Trial was powered on the basis of this outcome.

All patient endpoints were standard ACS NSQIP outcomes, with the exception of failure-to-rescue (i.e., not reported to hospitals for quality improvement by ACS NSQIP).

Data for all patient endpoints came from ACS NSQIP data provided by hospitals in the FIRST Trial.

| PRIMARY/<br>SECONDARY<br>ENDPOINT | ENDPOINT                                                  | DEFINITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary                           | 30-day postoperative (postop.) death or serious morbidity | All-cause mortality and/or serious morbidity within 30 days of surgical procedure (see definition of 'serious morbidity' below)                                                                                                                                                                                                                                                                                                                                               |
| Secondary                         | 30-day postop. death                                      | All-cause mortality within 30 days of surgical procedure                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Secondary                         | 30-day postop. serious morbidity                          | Any of the following complications within 30 days of surgical procedure:<br>organ space surgical site infection (no preoperative wound infection); wound<br>dehiscence; stroke; myocardial infarction; cardiac arrest with<br>cardiopulmonary resuscitation; pulmonary embolism; ventilation >48 hours<br>(no preoperative ventilation); acute renal failure (no preoperative renal<br>failure/dialysis); bleeding requiring transfusions >4 units; sepsis or septic<br>shock |
| Secondary                         | 30-day postop. any morbidity                              | Any of the following complications within 30 days of surgical procedure: any of the complications included in 'serious morbidity' or superficial or deep incisional surgical site infection (no preoperative wound infection); pneumonia (no preoperative pneumonia); unplanned intubation (no preoperative ventilation); progressive renal insufficiency (no preoperative dialysis/renal failure); urinary tract infection; deep vein thrombosis                             |
| Secondary                         | 30-day postop. failure-to-rescue                          | Death in the presence of serious morbidity, within 30 days of surgical procedure (see definition of 'serious morbidity' above)                                                                                                                                                                                                                                                                                                                                                |
| Secondary                         | 30-day postop. pneumonia                                  | Pneumonia (no preoperative pneumonia) within 30 days of surgical<br>procedure                                                                                                                                                                                                                                                                                                                                                                                                 |
| Secondary                         | 30-day postop. renal failure                              | Renal failure (no preoperative renal failure or dialysis) within 30 days of<br>surgical procedure                                                                                                                                                                                                                                                                                                                                                                             |
| Secondary                         | 30-day postop. surgery-related return to operating room   | Return to operating room for reason related to index surgery within 30 days of the index surgical procedure                                                                                                                                                                                                                                                                                                                                                                   |
| Secondary                         | 30-day postop. sepsis                                     | Sepsis or septic shock within 30 days of surgical procedure                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Secondary                         | 30-day postop. surgical site infection (SSI)              | Superficial, deep incisional, or organ space surgical site infection (no preoperative wound infection) within 30 days of surgical procedure                                                                                                                                                                                                                                                                                                                                   |
| Secondary                         | 30-day postop. urinary tract infection (UTI)              | Urinary tract infection within 30 days of surgical procedure                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### TABLE S6. FIRST Trial Study Endpoints – Patient Outcomes

#### **C.2. RESIDENT ENDPOINTS**

Table S7 on the following page lists the 34 resident endpoints that were studied in the FIRST Trial, along with brief definitions.

The primary resident endpoints in the FIRST Trial were resident satisfaction with education quality, and resident satisfaction with overall wellbeing.

Data for all resident endpoints came from a resident survey administered by the American Board of Surgery (ABS) in conjunction with the January 2015 ABSITE examination. The survey was administered to all surgical residents who sat for the ABSITE examination, irrespective of whether they were training in a FIRST trial-participating program. The data were processed by the ABS and delivered to the study team for analysis.

### TABLE S7. FIRST Trial Study Endpoints – Resident Outcomes

| PRIMARY/  | ENDPOINT                                                        | RESPONSE CATEGORIES                               | DICHOTOMIZED RESPONSE                      |
|-----------|-----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|
| SECONDARY |                                                                 |                                                   | CATEGORIES                                 |
|           |                                                                 |                                                   |                                            |
| Drimony   | Resident estisfaction with everall education quality            | 5 Point Likert: Very Dissetiafied Dissetiafied    | 1 - Very Disactisfied or Disactisfied      |
| Fillindiy | Resident satisfaction with overall education quality            | S-FOITIL LIKELL VELY DISSalished, Dissalished,    | 0 = Neutral Satisfied or Vary Satisfied    |
| Drimon    | Desident actisfaction with everall wellbeing                    | E Deint Likert Very Dissetiation Dissetiation     | 1 = Very Disastisfied or Disastisfied      |
| Primary   | Resident satisfaction with overall wellbeing                    | 5-Point Likert: Very Dissatisfied, Dissatisfied,  | I = Very Dissatisfied or Dissatisfied      |
| Cocondany | Derectived effect of institutional duty hours on nations        | Derectived Negative Effects Derectived No Effects | 1 = Derectived Negetive Effect             |
| Secondary | Perceived enect of institutional duty hours on patient          | Perceived Negative Effect, Perceived no Effect,   | 1 - Perceived Negative Effect              |
| O         | Salety                                                          | Perceived Positive Effect                         | U = Perceived No Effect of Positive Effect |
| Secondary | Perceived effect of institutional duty nours on continuity of   | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
| 0         |                                                                 |                                                   | U = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty nours on conference      | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | attendance                                                      |                                                   | U = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on clinical skills | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | acquisition                                                     | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on resident        | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | autonomy                                                        | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on operative       | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | volume                                                          | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on availability    | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | for elective cases                                              | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on availability    | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | for urgent cases                                                | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on time for        | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | teaching medical students                                       | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on relationship    | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | between interns/residents                                       | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on                 | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | professionalism                                                 | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on morale          | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           |                                                                 | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on ability to      | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | prepare for cases away from hospital                            | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on participation   | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | in research                                                     | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on job             | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | satisfaction                                                    | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |
| Secondary | Perceived effect of institutional duty hours on career          | Perceived Negative Effect; Perceived No Effect;   | 1 = Perceived Negative Effect              |
|           | choice satisfaction (decision to become a surgeon)              | Perceived Positive Effect                         | 0 = Perceived No Effect or Positive Effect |

| PRIMARY/<br>SECONDARY<br>ENDPOINT | ENDPOINT                                                                                                      | RESPONSE CATEGORIES                                                                    | DICHOTOMIZED RESPONSE<br>CATEGORIES                                               |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Secondary                         | Perceived effect of institutional duty hours on time with family and friends                                  | Perceived Negative Effect; Perceived No Effect;<br>Perceived Positive Effect           | 1 = Perceived Negative Effect<br>0 = Perceived No Effect or Positive Effect       |
| Secondary                         | Perceived effect of institutional duty hours on time for extracurricular activities (hobbies)                 | Perceived Negative Effect; Perceived No Effect;<br>Perceived Positive Effect           | 1 = Perceived Negative Effect<br>0 = Perceived No Effect or Positive Effect       |
| Secondary                         | Perceived effect of institutional duty hours on health                                                        | Perceived Negative Effect; Perceived No Effect;<br>Perceived Positive Effect           | 1 = Perceived Negative Effect<br>0 = Perceived No Effect or Positive Effect       |
| Secondary                         | Perceived effect of institutional duty hours on rest                                                          | Perceived Negative Effect; Perceived No Effect;<br>Perceived Positive Effect           | 1 = Perceived Negative Effect<br>0 = Perceived No Effect or Positive Effect       |
| Secondary                         | Resident satisfaction with continuity of care                                                                 | 5-Point Likert: Very Dissatisfied, Dissatisfied, Neutral, Satisfied, Very Satisfied    | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | Resident satisfaction with patient safety                                                                     | 5-Point Likert: Very Dissatisfied, Dissatisfied,<br>Neutral, Satisfied, Very Satisfied | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | Resident satisfaction with work hours/scheduling                                                              | 5-Point Likert: Very Dissatisfied, Dissatisfied, Neutral, Satisfied, Very Satisfied    | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | Resident satisfaction with quality/ease of handoffs/care transitions                                          | 5-Point Likert: Very Dissatisfied, Dissatisfied, Neutral, Satisfied, Very Satisfied    | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | Resident satisfaction with time for rest                                                                      | 5-Point Likert: Very Dissatisfied, Dissatisfied, Neutral, Satisfied, Very Satisfied    | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | Resident satisfaction with work hour regulations                                                              | 5-Point Likert: Very Dissatisfied, Dissatisfied, Neutral, Satisfied, Very Satisfied    | 1 = Very Dissatisfied or Dissatisfied<br>0 = Neutral, Satisfied or Very Satisfied |
| Secondary                         | How often fatigue affects personal safety                                                                     | 5-Point Scale: Almost Always; Often; Sometimes;<br>Rarely; Never                       | 1 = Almost Always or Often<br>0 = Sometimes, Rarely or Never                      |
| Secondary                         | How often fatigue affects patient safety                                                                      | 5-Point Scale: Almost Always; Often; Sometimes;<br>Rarely; Never                       | 1 = Almost Always or Often<br>0 = Sometimes, Rarely or Never                      |
| Secondary                         | How many times in the last month did resident leave during an operation due to duty hour regulations          | 5-Point Scale: 0 Times; 1-2 Times; 3-5 Times; 6-<br>10 Times; >10 Times                | 1 = 1 or More Times<br>0 = 0 Times                                                |
| Secondary                         | How many times in the last month did resident miss an operation due to duty hour regulations                  | 5-Point Scale: 0 Times; 1-2 Times; 3-5 Times; 6-<br>10 Times; >10 Times                | 1 = 1 or More Times<br>0 = 0 Times                                                |
| Secondary                         | How many times in the last month did resident hand off active patient care issue due to duty hour regulations | 5-Point Scale: 0 Times; 1-2 Times; 3-5 Times; 6-<br>10 Times; >10 Times                | 1 = 1 or More Times<br>0 = 0 Times                                                |

#### **D. STATISTICAL ANALYSIS – ADDITIONAL DETAILS**

#### **D.1. ANALYSIS OF PATIENT OUTCOMES**

*Intent-to-Treat (ITT) Analyses*. We estimated three-level hierarchical mixed-effects logistic regression models with empirical Bayes estimates of variance components. In these models, we regressed patient outcomes (Section C) on study arm assignment with controls for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs) and hospital-level and program-level random intercepts. Point estimates reported in this paper are conditional effects, conditioning on program and hospital intercepts (and other covariates in adjusted models).

*Evaluation of Noninferiority*. A noninferiority margin for 30-day postoperative death or serious morbidity was set at an absolute difference ( $\Delta$ ) of 1.25 percentage points from baseline rates. Given a baseline rate ( $P_0$ ) of 9.00%, we used the following formula to express the noninferiority margin as an odds ratio (OR):

$$OR_{\Delta} = \left( (P_0 + \Delta) * (1 - P_0) \right) / \left( P_0 * (1 - P_0 - \Delta) \right) \right)$$

Thus, for 30-day death and serious morbidity (DSM),  $P_0 = 0.090$  and  $\Delta = 0.0125$ :

$$OR_{\Delta}^{DSM} = ((0.090 + 0.0125) * (1 - 0.090)) / (0.090 * (1 - 0.090 - 0.0125)))$$
$$OR_{\Delta}^{DSM} = 1.15$$

Given a noninferiority margin of  $\Delta$ =1.25 percentage points, the difference between a 9.00% baseline rate of DSM and a rate of 10.25% corresponded to an odds ratio of OR $\Delta$ =1.15.

Given a 9.00% baseline rate of DSM in Standard Policy, a noninferiority margin of  $\Delta$ =1.25 percentage point absolute difference between Flexible Policy and Standard Policy arms amounted to a relative difference of 13.89% (((10.25-9.00)/9.00)\*100% = 13.89%) over baseline. Because we did not define noninferiority margins for secondary patient outcomes *ex ante*, we defined *ex post* (but prior to data analysis) noninferiority margins for secondary patient outcomes as a relative difference of 13.89% over Standard Policy baseline rates for each outcome. Table S8 shows Standard Policy baseline rates for each patient outcome, expressed as an odds ratio (OR<sub> $\Delta$ </sub>).

For each outcome, Flexible Policy was judged to be *noninferior* to Standard Policy if the point-estimate odds ratio was below  $OR_{\Delta}$ , and the upper bound of the 92% confidence interval (92%CI) was also below  $OR_{\Delta}$ .

Flexible Policy was judged to be *superior* to Standard Policy if both the point estimate odds ratio and 92%CI upper bound were <1.00 and  $<OR_{\Delta}$ .

Flexible Policy was judged to be *inferior* to Standard Policy if both the point estimate odds ratio and 92%CI lower bound were above 1.00 and  $>OR_{\Delta}$ 

The noninferiority of Flexible Policy with respect to Standard Policy was deemed *inconclusive* if the point estimate odds ratio was below  $OR_{\Delta}$ , but the 92%CI upper bound was above  $OR_{\Delta}$ .

| 30-Day Postoperative Patient Outcome     | Standard Policy<br>Baseline Rate (P <sub>0</sub> ) | NonInferiority Margin of 13%<br>Relative Difference (from Baseline)<br>Expressed as an Odds Ratio (OR <sub>II</sub> ) |
|------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Death/Serious Morbidity                  | 9.00%                                              | 1.15                                                                                                                  |
| Death                                    | 1.14%                                              | 1.14                                                                                                                  |
| Overall Morbidity                        | 9.18%                                              | 1.16                                                                                                                  |
| Serious Morbidity                        | 8.58%                                              | 1.15                                                                                                                  |
| Failure-to-Rescue                        | 8.34%                                              | 1.15                                                                                                                  |
| Pneumonia                                | 1.17%                                              | 1.14                                                                                                                  |
| Renal Failure                            | 0.64%                                              | 1.14                                                                                                                  |
| Surgery-Related Return-to-OR/Reoperation | 2.66%                                              | 1.14                                                                                                                  |
| Sepsis                                   | 1.90%                                              | 1.14                                                                                                                  |
| Surgical Site Infection                  | 4.52%                                              | 1.15                                                                                                                  |
| Urinary Tract Infection                  | 1.06%                                              | 1.14                                                                                                                  |

#### TABLE S8. Patient Outcomes, Baseline Rates of Outcomes, and NonInferiority Margins

NOTE: Rates are observed rates of complications among general surgery patients in the Standard Policy arm (where general surgery patients were identified on the basis of a combination of surgeon specialty and Current Procedural Terminology™ (CPT) codes) in FIRST Trial ACS NSQIP data (2014-2015 academic year).

<u>Sensitivity Analyses</u>. To examine the robustness of our estimates with respect to variation in model specification, we also estimated non-hierarchical logistic regression with two-dimensional clustered standard errors. Two-level hierarchical logistic regression models were also estimated with program-level intercepts only, and also with hospital-level intercepts only.

All models were also estimated with additional adjustment for patient characteristics only, hospital characteristics only, as well as a combination of patient and hospital characteristics. Patient covariates varied across models for different outcomes and were based on standard ACS NSQIP risk-adjustment models from the ACS NSQIP Semiannual Report (SAR) Supplement Model Reports (Released January 2015). Section G lists patient covariates that were used in adjusting each patient outcome. Hospital characteristics that were used for adjustment were: total admission volume, presence of a Commission on Cancer-approved cancer program, resident-to-bed ratio, ownership type, and geographic region.

<u>Subgroup Analyses</u>. Planned subgroup analyses were conducted for the primary patient outcome (30day postoperative death or serious morbidity) to investigate whether there were any differential effects of assignment to Flexible Policy on outcomes by (1) emergent/urgent vs. elective surgery; (2) high-risk patients (top decile of highest predicted risk of DSM) vs. all other patients; and (3) inpatient vs outpatient operations.

In subgroup analyses, the basic hierarchical logistic regression ITT model was modified to include an interaction term between study arm assignment and the subgroup variable of interest.

<u>*Per-Protocol Analyses*</u>. Per-protocol analyses of patient outcomes were carried out on the subset of programs that were adherent to the conditions of their study arm, as defined in Section B (number of

adherent programs = 115 programs). The models we employed were the same as those described above for ITT analyses.

<u>As-Treated Analyses</u>. As-treated analyses investigated the effect of departures from ACGME duty hour standards on resident outcomes, regardless of study arm assignment. We modeled the effect of departures from ACGME duty hour standards in three ways.

First, we regressed patient outcomes on a count of the number of departures from ACGME standards (range: 0-4). Coefficients on this variable represented the effect of an additional departure from ACGME standards on patient outcomes.

Second, to explore whether there were any nonlinearities or non-monotonicity in the relationship between departures from ACGME standards and patient outcomes, we regressed patient outcomes on a set of dummy variables indicating the total number of departures from ACGME standards at an institution: no departures from standards (reference category), one departure, two departures, three departures, and four departures from standards.

Third, we regressed resident outcomes on a set of four dichotomous variables indicating whether or not a program deviated from the specific ACGME duty hour standards and implemented the following: a) work shifts for interns can exceed 16 hours; b) work shifts for residents can exceed 28 hours; c) residents are not required to have at least 8 hours off between shifts; d) residents are not required to have at least 14 hours off after 24 hours of continuous duty. These variables were included in regression models simultaneously to investigate whether there were any standard-specific effects on outcomes.

As-treated analyses modeled the relationship between outcomes and predictors using hierarchical logistic regression with program- and hospital-level random intercepts.

<u>Local Average Treatment Effect Analyses</u>. Because adherence to study arm conditions may be endogenous to factors that also affect outcomes of interest, we used instrumental variables (IV) estimates of the local average treatment effect (LATE) to estimate the effect of Flexible Policy on patient outcomes among the subset of programs that would change their institutional duty hour policies (and make the policies less restrictive) if given the opportunity to do so.

An IV is a variable that is highly predictive of the endogenous variable, but otherwise uncorrelated with outcomes of interest except through its effect on the endogenous variable. We used study arm assignment to instrument actual exposure to flexible duty hours because by construction, it was highly predictive of exposure, and uncorrelated with outcomes except through its effect on exposure.

Using two-stage regression models, we regressed exposure to departures from ACGME standards on study arm assignment in the first stage. In the second stage, patient outcomes were regressed on predicted exposure to departures from the selected ACGME duty hour standards. Thus, IV LATE analyses used variation in actual exposure to departures from ACGME duty hour standards that was "induced" by randomization to assess the effect of the Flexible Policy on outcomes

IV provides consistent estimates of causal effects if 1) the instrumental variable is strongly correlated (i.e., is strongly predictive) of actual departure from ACGME standards (i.e., actual exposure to Flexible Policy conditions), and 2) the instrument is independent of outcomes and only affects outcomes through its effect on actual exposure to deviations from ACGME duty hour standards. To test the first assumption, we examined the magnitude and significance of the coefficient on the instrument in the first

stage regression, as well as the first stage F statistic. The second assumption is satisfied because treatment assignment could not logically affect outcomes except through its effect on exposure to departures from ACGME duty hour standards.

To establish a baseline for comparison, we first estimated linear probability models in which patient outcomes were regressed on study arm assignment and controls for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs). We estimated both ordinary least squares models with program-level clustered standard errors, as well as hierarchical linear models with program-level random intercepts.

To implement IV LATE analyses, we estimated both first- and second-stage regressions as linear probability models. For each patient outcome, we estimated two-stage least squares (TSLS) IV models with program-level clustered standard errors, as well as two-level hierarchical IV models with program-level random intercepts. We explored both generalized two-stage least squares (G2SLS) and error-component two-stage least squares (EC2SLS) estimation methods. All IV LATE models controlled for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs).

#### **D.2. ANALYSIS OF RESIDENT ENDPOINTS**

#### **Preliminary Analyses**

<u>Intent-to-Treat (ITT) Analyses</u>. Resident outcomes originally measured using a 5-point scale (e.g., satisfaction outcomes, frequency outcomes) were initially modeled using two-level hierarchical ordered logistic regression with program-level random intercepts. Violation of proportional odds assumption in ordered logistic regression was assessed using Brant and Wald tests.

Resident outcomes originally measured as unordered trichotomous categorical variables (i.e., variables measuring residents' perception of the effects of duty hour policy) were initially modeled using two-level hierarchical multinomial logistic regression with program-level random intercepts.

In all models, resident outcomes were regressed on a variable indicating study arm assignment (Flexible Policy vs. Standard Policy (reference category)). All models for all outcomes were estimated with and without controls for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs). All models were also estimated with and without adjustment for resident gender (male, female); postgraduate year (PGY1-PGY5); program type (academic, community or military); and program geographic region (Northeast, West, Southwest, Midwest, South).

To assess the sensitivity of our estimates with respect to minor variations in model specification, we also estimated non-hierarchical ordered logistic regression models with program-level clustered standard errors and multinomial and hierarchical multinomial logistic regression models for all ordered categorical outcomes. For unordered categorical outcomes, we also estimated non-hierarchical multinomial logistic regression models with program-level clustered standard errors.

<u>Subgroup Analyses</u>. For primary resident outcomes only, we examined whether there were any subgroup effects of assignment to Flexible Policy (vs. Standard Policy) within gender subgroups (among

females, among males), within resident PGY-level subgroups (among junior residents (PGY1 & PGY2), among senior residents (PGY3 & PGY4), among chief residents (PGY5), within geographic regions (among Northeastern programs, among Southern programs, among Midwestern programs, among Western programs), and within program types (among academic-based programs, among community or military-based programs). Subgroup analyses were carried out by interacting study arm assignment with subgroup variables.

<u>Program Adherence to Study Arm Conditions</u>. To explore the influence of differential adherence on our estimates of the Flexible Policy effect on resident outcomes, we undertook per-protocol, as-treated, and local average treatment effect analyses.

*Per-Protocol Analyses*. Per-protocol analyses of patient outcomes and resident outcomes were carried out on the subset of programs that were adherent to the conditions of their study arm (as previously described in Section B and in Section D.1). Models for per-protocol analyses were otherwise the same as those used in ITT analyses.

*As-Treated Analyses.* As-treated analyses investigated the effect of departures from ACGME duty hour standards on resident outcomes, regardless of study arm assignment. We modeled the effect of departures from ACGME duty hour standards in three ways.

First, we regressed resident outcomes on a count of the number of departures from ACGME standards (previously described in D.1).

Second, we regressed resident outcomes on a set of dummy variables indicating the total number of departures from ACGME standards at an institution: no departures from standards (reference category), one departure, two departures, three departures, and four departures from standards (see D.1).

Third, we regressed resident outcomes on a set of four dichotomous variables indicating whether or not a program deviated from each of the specific ACGME duty hour standards and implemented the following: a) work shifts for interns can exceed 16 hours; b) work shifts for residents can exceed 28 hours; c) residents are not required to have at least 8 hours off between shifts; d) residents are not required to have at least 8 hours off continuous duty (see D.1.).

All as-treated models included controls for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs). As-treated models were estimated using hierarchical logistic regression with program random intercepts.

*Local Average Treatment Effect Analyses*. As previously described in D.1., we again used IV LATE methods to estimate the effect of Flexible Policy on resident outcomes among the subset of programs that would change their institutional duty hour policies (and make the policies less restrictive) if given the opportunity to do so.

To implement IV LATE analyses, we dichotomized all measures of resident outcomes and then estimated both first- and second-stage regressions as linear probability models. For each resident outcome, we estimated two-stage least squares (TSLS) IV models with program-level clustered standard errors, as well as two-level hierarchical IV models with program-level random intercepts. We explored both generalized two-stage least squares (G2SLS) and error-component two-stage least squares (EC2SLS) estimation methods. All IV LATE models controlled for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs).

#### **Reported Analyses**

The original study protocol discussed the possibility of dichotomizing the resident outcomes, and this was done in the final analyses. Results were comparable between hierarchical ordered and multinomial logistic regression models and the final hierarchical logistic regression models (dichotomized outcomes) shown in the paper. We dichotomized all resident outcomes (see Section D) for three reasons: (1) due to small/zero cells, (2) violation of proportional odds assumption for some (but not all) outcomes, and (3) ease of presentation. We then repeated all ITT, subgroup, per-protocol, as-treated, and IV LATE analyses as previously described using methods for dichotomous outcomes (hierarchical logistic regression).

#### **Other Methodological Notes**

No inferiority margins were defined for any of the resident outcomes. Thus, hypothesis testing was based on two-tailed tests of significance on study arm assignment (Flexible Policy vs. Standard Policy (reference)). Because resident outcomes were not examined during interim analysis, hypothesis testing for resident outcomes was conducted with  $\alpha$ =0.05 and standard 95% confidence intervals.

We did not adjust p-values for multiple hypothesis testing because doing so would favor our hypothesis of finding no differences in resident outcomes between study arms. We also considered each resident outcome to be of specific substantive interest rather than multiple indicators of a single construct of resident outcomes.

#### E. RESULTS TABLES

| Table S9  | Raw Hospital-Level Rates of Postoperative 30-Day Patient Outcomes by Study Arm                                                                                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table S10 | Intent-to-Treat Estimate of the Effect of Assignment to Flexible Policy on 30-Day Postoperative Death or Serious Morbidity (Primary Patient Outcome)                                                                              |
| Table S11 | Intent-to-Treat Estimate of the Effect of Assignment to Flexible Policy on 30-Day Postoperative Death or Serious Morbidity (Primary Patient Outcome) with Adjustment for Patient Characteristics                                  |
| Table S12 | Summary of Hierarchical Logistic Regression Estimates of the<br>Association between Assignment to Flexible Policy and Odds of<br>Postoperative Complications, with and without Adjustment                                         |
| Table S13 | Summary of Subgroup Effects of Flexible Policy Assignment: 30-Day<br>Postoperative Death/Serious Morbidity (Primary Patient Outcome)                                                                                              |
| Table S14 | Summary of Per-Protocol Analyses of the Association between Trial Arm Assignment and Patient Outcomes                                                                                                                             |
| Table S15 | As-Treated Analysis of the Effect of Actual Exposure to Flexible Policy<br>on Patient Outcomes: 30-Day Postoperative Death/Serious Morbidity<br>(Primary Patient Outcome)                                                         |
| Table S16 | Instrumental Variables (IV) Estimates of the Local Average Treatment<br>Effect (LATE): 30-Day Postoperative Death or Serious Morbidity<br>(Primary Patient Outcome)                                                               |
| Table S17 | Unadjusted Intent-to-Treat Estimate of the Effect of Assignment to<br>Flexible Policy on Resident Dissatisfaction and Wellbeing (Primary<br>Resident Outcomes)                                                                    |
| Table S18 | Adjusted Intent-to-Treat Estimate of the Effect of Assignment to Flexible<br>Policy on Resident Dissatisfaction with Education Quality and Wellbeing<br>(Primary Resident Outcomes) with Inclusion of Program-Level<br>Covariates |
| Table S19 | Primary Resident Outcomes, Summary of Subgroup Analyses                                                                                                                                                                           |
| Table S20 | Per-Protocol Estimate of the Effect of Assignment to Flexible Policy on<br>Resident Dissatisfaction with Education Quality and Wellbeing (Primary<br>Resident Outcomes)                                                           |

| Table S21 | As-Treated Estimate of the Effect of Assignment to Flexible Policy on<br>Odds of Resident Being (Very) Dissatisfied with Education Quality<br>(Primary Resident Outcome) |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table S22 | As-Treated Estimate of the Effect of Assignment to Flexible Policy on<br>Odds of Resident Being (Very) Dissatisfied with Wellbeing (Primary<br>Resident Outcome)         |
| Table S23 | Instrumental Variables (IV) Estimates of the Local Average Treatment<br>Effect on Resident Dissatisfaction with Education Quality (Primary<br>Resident Outcome)          |
| Table S24 | Instrumental Variables (IV) Estimates of the Local Average Treatment<br>Effect on Resident Dissatisfaction with Wellbeing (Primary Resident<br>Outcome)                  |

|                                  | Mean             | Clustered        |                  |         |
|----------------------------------|------------------|------------------|------------------|---------|
|                                  | TOTAL            | STANDARD         | FLEXIBLE POLICY  | P-Value |
|                                  |                  | POLICY           |                  |         |
| Raw Hospital-Level Postoperative |                  |                  |                  |         |
| Outcome Rates                    |                  |                  |                  |         |
| Death or serious morbidity       | 8.88 (8.36-9.40) | 8.97 (8.17-9.76) | 8.80 (8.12-9.48) | 0.743   |
| Death                            | 1.17 (1.07-1.27) | 1.14 (0.97-1.30) | 1.20 (1.07-1.33) | 0.522   |
| Serious morbidity                | 8.43 (7.93-8.94) | 8.53 (7.76-9.30) | 8.35 (7.68-9.02) | 0.717   |
| Any morbidity                    | 8.34 (7.81-8.86) | 8.48 (7.69-9.27) | 8.21 (7.51-8.91) | 0.600   |
| Failure-to-rescue                | 0.72 (0.65-0.80) | 0.70 (0.59-0.81) | 0.75 (0.64-0.85) | 0.475   |
| Pneumonia                        | 1.18 (1.05-1.32) | 1.21 (1.00-1.42) | 1.16 (0.99-1.33) | 0.682   |
| Renal failure                    | 0.65 (0.57-0.73) | 0.61 (0.50-0.71) | 0.69 (0.58-0.81) | 0.248   |
| Return to operating room         | 2.61 (2.41-2.80) | 2.71 (2.42-3.00) | 2.51 (2.24-2.79) | 0.310   |
| Postoperative sepsis             | 1.71 (1.50-1.92) | 1.77 (1.47-2.06) | 1.65 (1.36-1.94) | 0.577   |
| Surgical site infection          | 4.31 (3.98-4.64) | 4.42 (3.93-4.91) | 4.22 (3.77-4.66) | 0.520   |
| Urinary tract infection          | 1.01 (0.90-1.12) | 1.04 (0.88-1.20) | 0.97 (0.82-1.13) | 0.536   |

#### TABLE S9. Raw Hospital-Level Rates of Postoperative 30-Day Patient Outcomes by Study Arm

NOTE: Patient outcomes were aggregated to the hospital level. This table reports sample means of hospital-level aggregated patient outcomes by study arm and for the entire sample (N=148 hospitals). 96% confidence intervals are reported because a two-tailed test for differences in means across study arms was conducted with  $\alpha$ =0.04.

# TABLE S10. Intent-to-Treat Estimate of the Effect of Assignment to Flexible Policy on 30-Day Postoperative Death or Serious Morbidity (*Primary Patient Outcome*)

| REGRESSOR                                          | ODDS RATIO<br>(OR) | 92% CONFIDENCE<br>INTERVAL | P-VALUE   |
|----------------------------------------------------|--------------------|----------------------------|-----------|
|                                                    | 0.00               | 0.07 4.00                  | 0.440     |
| Flexible Policy (vs. Standard Policy)              | 0.96               | 0.87 – 1.06                | 0.443     |
| 2013 (Baseline) 30-Day Postoperative Death/Serious |                    |                            |           |
| Morbidity                                          |                    |                            |           |
| Tertile 1                                          | 1.00               | 0.83 – 1.21                | 0.991     |
| Tertile 2                                          | 1.29               | 1.07 – 1.56                | 0.017     |
| Tertile 3                                          | 1.53               | 1.27 – 1.85                | <0.001    |
| Baseline Data Not Available                        | Reference          | Reference                  | Reference |
| Variance Components                                |                    |                            |           |
| Hospital                                           | 0.10               | 0.08 – 0.13                |           |
| Residency Program                                  | 5.58E-09           | 0                          |           |
| N Cases                                            |                    | 138691                     |           |
| N Hospitals                                        | 148                |                            |           |
| N Residency Programs                               |                    | 115                        |           |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts.

| TABLE S11. Intent-to-Trea         | at Estimate of the Effect of | f Assignment to Flexible Polic | y on 30-Day Postoperative |
|-----------------------------------|------------------------------|--------------------------------|---------------------------|
| <b>Death or Serious Morbidity</b> | y (Primary Patient Outcon    | e) with Adjustment for Patien  | t Characteristics         |

| REGRESSOR                                          | ODDS RATIO<br>(OR) | 92% CONFIDENCE<br>INTERVAL | P-VALUE   |  |
|----------------------------------------------------|--------------------|----------------------------|-----------|--|
|                                                    | ()                 |                            |           |  |
| Flexible Policy (vs. Standard Policy)              | 0.96               | 0.90 – 1.04                | 0.378     |  |
| 2013 (Baseline) 30-Day Postoperative Death/Serious |                    |                            |           |  |
| Morbidity                                          |                    |                            |           |  |
| Tertile 1                                          | 0.87               | 0.76 – 0.99                | 0.065     |  |
| Tertile 2                                          | 0.95               | 0.82 – 1.08                | 0.470     |  |
| Tertile 3                                          | 1.05               | 0.91 – 1.20                | 0.559     |  |
| Baseline Data Not Available                        | Reference          | Reference                  | Reference |  |
| Age Group (Reference: Age<65)                      |                    |                            |           |  |
| Ages 65-74                                         | 1.19               | 1.14 – 1.24                | <0.001    |  |
| Ages 75-84                                         | 1.23               | 1.17 – 1.31                | <0.001    |  |
| Ages 85+                                           | 1.33               | 1.22 – 1.46                | <0.001    |  |
| ASA Class (Reference: Class 1)                     |                    |                            |           |  |
| Class 2                                            | 1.71               | 1.50 – 1.95                | <0.001    |  |
| Class 3                                            | 2.89               | 2.53 – 3.30                | <0.001    |  |
| Classes 4-5                                        | 6.72               | 5.85 – 7.73                | <0.001    |  |
| CPT Linear Risk                                    | 2.58               | 2.51 – 2.64                | <0.001    |  |
| Emergent/Urgent Surgery (Reference: Elective)      | 1.33               | 1.26 – 1.41                | <0.001    |  |
| Functional Status (Reference: Independent)         |                    |                            |           |  |
| Partially Dependent                                | 1.70               | 1.54 – 1.87                | <0.001    |  |
| Totally Dependent                                  | 1.91               | 1.61 – 2.26                | <0.001    |  |
| Male (Reference: Female)                           | 1.09               | 1.05 – 1.13                | <0.001    |  |
| Wound Class (Reference: Clean)                     |                    |                            |           |  |
| Clean/Contaminated                                 | 1.03               | 0.98 – 1.09                | 0.260     |  |
| Contaminated                                       | 1.27               | 1.19 – 1.36                | <0.001    |  |
| Dirty/Infected                                     | 1.42               | 1.33 – 1.52                | <0.001    |  |
| Variance Components                                |                    |                            |           |  |
| Hospital                                           | 0.04               | 0.02 - 0.06                |           |  |
| Residency Program                                  | 0.0043             | 0.0001 - 0.2212            |           |  |
| N Cases                                            |                    | 138691                     |           |  |
| N Hospitals                                        |                    | 148                        |           |  |
| N Residency Programs                               | 115                |                            |           |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 5 integration points used in estimation.

 TABLE S12. Summary of Hierarchical Logistic Regression Estimates of the Association between

 Assignment to Flexible Policy and Odds of Postoperative Complications, with and without Adjustment

| MODEL                                                  | ODDS  | 92% CI      | Р     | N        |           |        |
|--------------------------------------------------------|-------|-------------|-------|----------|-----------|--------|
|                                                        | RATIO |             |       | PROGRAMS | HOSPITALS | CASES  |
| 30-Day Postoperative Death/Serious                     |       |             |       |          |           |        |
| Morbidity                                              |       |             |       |          |           |        |
| No Patient or Hospital Characteristics                 | 0.96  | 0.87 - 1.06 | 0.443 | 115      | 148       | 138691 |
| ("Unadjusted")                                         |       |             |       |          |           |        |
| Adjusted for Patient Characteristics                   | 0.96  | 0.90 - 1.04 | 0.378 | 115      | 148       | 138691 |
| Adjusted for Hospital Characteristics                  | 0.99  | 0.90 - 1.09 | 0.857 | 112      | 140       | 133838 |
| Adjusted for Patient and Hospital                      | 0.99  | 0.92 - 1.07 | 0.892 | 112      | 140       | 133838 |
| Characteristics                                        |       |             |       |          |           |        |
| 30-Day Postoperative Death                             |       |             |       |          |           |        |
| No Patient or Hospital Characteristics                 | 1.00  | 0.86 - 1.16 | 0.993 | 115      | 148       | 138691 |
| ("Unadjusted")                                         |       |             |       |          |           |        |
| Adjusted for Patient Characteristics                   | 0.95  | 0.82 – 1.10 | 0.558 | 115      | 148       | 138691 |
| Adjusted for Hospital Characteristics                  | 1.04  | 0.89 - 1.21 | 0.665 | 112      | 140       | 133838 |
| Adjusted for Patient and Hospital                      | 0.95  | 0.82 - 1.12 | 0.636 | 112      | 140       | 133838 |
| Characteristics                                        |       |             |       |          |           |        |
| 30-Day Postoperative Serious                           |       |             |       |          |           |        |
| Morbidity                                              |       |             |       |          |           |        |
| No Patient or Hospital Characteristics                 | 0.96  | 0.86 - 1.06 | 0.449 | 115      | 148       | 138691 |
| ("Unadjusted")                                         |       |             |       |          | 1.10      |        |
| Adjusted for Patient Characteristics                   | 0.96  | 0.90 - 1.04 | 0.399 | 115      | 148       | 138691 |
| Adjusted for Hospital Characteristics                  | 0.99  | 0.90 - 1.09 | 0.848 | 112      | 140       | 133838 |
| Adjusted for Patient and Hospital                      | 0.99  | 0.92 – 1.07 | 0.878 | 112      | 140       | 133838 |
| Characteristics                                        |       |             |       |          |           |        |
| 30-Day Postoperative Any Morbidity                     |       |             |       |          |           |        |
| No Patient or Hospital Characteristics                 | 0.94  | 0.84 - 1.06 | 0.392 | 115      | 148       | 138691 |
| ("Unadjusted")                                         | 0.00  | 0.00 1.01   | 0.000 | 445      | 140       | 400004 |
| Adjusted for Patient Characteristics                   | 0.96  | 0.89 - 1.04 | 0.388 | 115      | 148       | 138691 |
| Adjusted for Hospital Characteristics                  | 0.99  | 0.89 - 1.10 | 0.849 | 112      | 140       | 133838 |
| Adjusted for Patient and Hospital                      | 1.00  | 0.92 - 1.08 | 0.928 | 112      | 140       | 133838 |
| Characteristics                                        |       |             |       |          |           |        |
| 30-Day Postoperative Failure-to-                       |       |             |       |          |           |        |
| No Detions or Hospital Characteristics                 | 1.02  | 0.07 1.02   | 0 720 | 115      | 1/0       | 11027  |
| ("I hadjusted")                                        | 1.03  | 0.07 - 1.23 | 0.750 | 115      | 140       | 11957  |
| ( Unaujusted )<br>Adjusted for Patient Characteristics | 1.00  | 0.86 1.18   | 0.066 | 115      | 1/9       | 11037  |
| Adjusted for Hospital Characteristics                  | 1.00  | 0.00 - 1.10 | 0.900 | 110      | 140       | 11937  |
| Adjusted for Detions and Hospital                      | 1.00  | 0.09 - 1.20 | 0.075 | 112      | 140       | 11623  |
| Characteristics                                        | 1.01  | 0.00 - 1.20 | 0.000 | 112      | 140       | 11023  |
| 20 Day Postoporativo Proumonia                         |       |             |       |          |           |        |
| No Patient or Hospital Characteristics                 | 0.95  | 0.78 1.1/   | 0 603 | 115      | 1/12      | 138375 |
| ("Inadjusted")                                         | 0.35  | 0.70 - 1.14 | 0.000 | 115      | 140       | 100070 |
| Adjusted for Patient Characteristics                   | 0.06  | 0.81 1.14   | 0 660 | 115      | 1/12      | 138375 |
| Adjusted for Hospital Characteristics                  | 1.00  | 0.01 - 1.14 | 0.003 | 110      | 1/0       | 133531 |
| Adjusted for Patient and Hospital                      | 1.02  | 0.04 - 1.24 | 0.007 | 112      | 140       | 133531 |
| Characteristics                                        | 1.00  | 0.04 - 1.20 | 0.334 | 112      | 140       | 100001 |
| ondiducensilos                                         |       |             |       |          |           |        |

Note: Missing complete hospital-level characteristics for 8 hospitals (3 programs).

TABLE S12 (continued). Summary of Hierarchical Logistic Regression Estimates of the Association between Assignment to Flexible Policy and Odds of Postoperative Complications, with and without Adjustment

| MODEL                                 | ODDS  | 92% CI      | Р     | N        |           |        |
|---------------------------------------|-------|-------------|-------|----------|-----------|--------|
|                                       | RATIO |             |       | PROGRAMS | HOSPITALS | CASES  |
| 30-Day Postoperative Renal Failure    |       |             |       |          |           |        |
| No Patient or Hospital                | 1.05  | 0.86 - 1.28 | 0.659 | 115      | 148       | 138596 |
| Characteristics ("Unadjusted")        |       |             |       |          |           |        |
| Adjusted for Patient Characteristics  | 1.07  | 0.91 – 1.27 | 0.466 | 115      | 148       | 138596 |
| Adjusted for Hospital Characteristics | 1.11  | 0.91 - 1.35 | 0.357 | 112      | 140       | 133745 |
| Adjusted for Patient and Hospital     | 1.10  | 0.92 – 1.31 | 0.371 | 112      | 140       | 133745 |
| Characteristics                       |       |             |       |          |           |        |
| 30-Day Postoperative Unplanned        |       |             |       |          |           |        |
| Reoperation                           |       |             |       |          |           |        |
| No Patient or Hospital                | 0.91  | 0.81 - 1.03 | 0.173 | 115      | 148       | 138691 |
| Characteristics ("Unadjusted")        |       |             |       |          |           |        |
| Adjusted for Patient Characteristics  | 0.93  | 0.84 – 1.04 | 0.249 | 115      | 148       | 138691 |
| Adjusted for Hospital Characteristics | 0.97  | 0.86 - 1.09 | 0.618 | 112      | 140       | 133838 |
| Adjusted for Patient and Hospital     | 0.99  | 0.89 – 1.09 | 0.804 | 112      | 140       | 133838 |
| Characteristics                       |       |             |       |          |           |        |
| 30-Day Postoperative Sepsis           |       |             |       |          |           |        |
| No Patient or Hospital                | 0.90  | 0.73 - 1.10 | 0.363 | 115      | 148       | 135258 |
| Characteristics ("Unadjusted")        |       |             |       |          |           |        |
| Adjusted for Patient Characteristics  | 0.89  | 0.76 – 1.03 | 0.166 | 115      | 148       | 135258 |
| Adjusted for Hospital Characteristics | 0.94  | 0.77 - 1.15 | 0.594 | 112      | 140       | 130482 |
| Adjusted for Patient and Hospital     | 0.93  | 0.79 – 1.09 | 0.414 | 112      | 140       | 130482 |
| Characteristics                       |       |             |       |          |           |        |
| 30-Day Postoperative Surgical Site    |       |             |       |          |           |        |
| Infection                             |       |             |       |          |           |        |
| No Patient or Hospital                | 0.93  | 0.81 - 1.08 | 0.396 | 115      | 148       | 137346 |
| Characteristics ("Unadjusted")        |       |             |       |          |           |        |
| Adjusted for Patient Characteristics  | 0.94  | 0.86 – 1.04 | 0.317 | 115      | 148       | 137346 |
| Adjusted for Hospital Characteristics | 0.97  | 0.85 - 1.11 | 0.731 | 112      | 140       | 132526 |
| Adjusted for Patient and Hospital     | 0.99  | 0.88 – 1.10 | 0.847 | 112      | 140       | 132526 |
| Characteristics                       |       |             |       |          |           |        |
| 30-Day Postoperative Urinary Tract    |       |             |       |          |           |        |
| Infection                             |       |             |       |          |           |        |
| No Patient or Hospital                | 0.91  | 0.76 - 1.08 | 0.324 | 115      | 148       | 138691 |
| Characteristics ("Unadjusted")        |       |             |       |          |           |        |
| Adjusted for Patient Characteristics  | 0.90  | 0.76 – 1.06 | 0.254 | 115      | 148       | 138691 |
| Adjusted for Hospital                 | 0.91  | 0.76 - 1.09 | 0.376 | 112      | 140       | 133838 |
| Characteristics                       |       |             |       |          |           |        |
| Adjusted for Patient and Hospital     | 0.90  | 0.75 – 1.08 | 0.304 | 112      | 140       | 133838 |
| Characteristics                       |       |             |       |          |           |        |

Note: Missing complete hospital-level characteristics for 8 hospitals (3 programs).

### TABLE S13. Summary of Subgroup Effects of Flexible Policy Assignment: 30-Day Postoperative Death/Serious Morbidity (*Primary Patient Outcome*)

| Subgroup Comparison                                | UNEXPONENTIATED Coefficient<br>(95%CI) | P-Value |
|----------------------------------------------------|----------------------------------------|---------|
| Emergency vs. Non-Emergency                        |                                        |         |
| Non-Emergency: Flexible Policy vs. Standard Policy | -0.047 (-0.168 – 0.074)                | 0.446   |
| Emergency: Flexible Policy vs. Standard Policy     | -0.008 (-0.150 – 0.134)                | 0.914   |
| Subgroup Difference in Study Arm Differences       | 0.039 (-0.059 – 0.137)                 | 0.433   |
| Overall F-Test for Significant Interaction         |                                        | 0.560   |
|                                                    |                                        |         |
| Inpatient vs. Outpatient                           |                                        |         |
| Outpatient: Flexible Policy vs. Standard Policy    | -0.161 (-0.3160.006)                   | 0.041   |
| Inpatient: Flexible Policy vs. Standard Policy     | 0.005 (-0.102 – 0.112)                 | 0.928   |
| Subgroup Difference in Study Arm Differences       | 0.166 (0.039 – 0.293)                  | 0.010   |
| Overall F-Test for Significant Interaction         |                                        | 0.036†  |
|                                                    |                                        |         |
| High-Risk vs. Not High Risk                        |                                        |         |
| Not High Risk: Flexible Policy vs. Standard Policy | -0.052 (-0.148 – 0.043)                | 0.282   |
| High Risk: Flexible Policy vs. Standard Policy     | -0.064 (-0.179 – 0.052)                | 0.279   |
| Subgroup Difference in Study Arm Differences       | -0.011 (-0.101 – 0.078)                | 0.803   |
| Overall F-Test for Significant Interaction         |                                        | 0.494   |

N Programs = 115 programs; N Hospitals = 148 hospitals; N NSQIP Cases = 138691 cases

NOTE: Estimates are from 3-level hierarchical logistic regression models that regress 30-day death/serious morbidity on an interaction between study arm assignment (Flexible Policy vs. Standard Policy) and subgroup variable. Models control for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) and include both program-level and hospital-level random intercepts. "High-risk" group defined by being in the top decile of ACS NSQIP CPT-based risk predictor for DSM. †This interaction is not statistically significant at the p<0.04 level after Bonferroni adjustment for multiple tests (number of tests = 2, because there are two subgroups), and there is no difference between Flexible Policy and Standard Policy for either group.

| OUTCOME                                  | Assignment to Flexible Policy OR (92%Cl) |                    |                    |     | N Hospitals | N         |
|------------------------------------------|------------------------------------------|--------------------|--------------------|-----|-------------|-----------|
|                                          |                                          | P-Value            |                    | 4   |             | ACS NSQIP |
|                                          | Model 1                                  | Model 2            | Model 3            |     |             | Cases     |
| Primary Outcomes                         |                                          |                    |                    |     |             |           |
| 30-Day Postoperative Death or Serious    | 0.97 (0.87 – 1.07)                       | 0.98 (0.89 – 1.08) | 0.97 (0.87 – 1.07) | 113 | 146         | 136319    |
| Morbidity                                | 0.543                                    | 0.709              | 0.543              |     |             |           |
| Secondary Outcomes                       |                                          |                    |                    |     |             |           |
| 30-Day Postoperative Death               | 1.00 (0.87 – 1.16)                       | 0.98 (0.86 – 1.13) | 1.00 (0.87 – 1.16) | 113 | 146         | 136319    |
|                                          | 0.979                                    | 0.841 <sup>´</sup> | 0.979              |     |             |           |
| 30-Day Postoperative Serious Morbidity   | 0.96 (0.87 – 1.07)                       | 0.98 (0.89 - 1.08) | 0.96 (0.87 – 1.07) | 113 | 146         | 136319    |
|                                          | 0.547 <sup>(</sup>                       | 0.758 <sup>´</sup> | 0.547              |     |             |           |
| 30-Day Postoperative Any Morbidity       | 0.95 (0.85 – 1.07)                       | 0.97 (0.87 – 1.08) | 0.95 (0.85 – 1.07) | 113 | 146         | 136319    |
|                                          | 0.478                                    | 0.659              | 0.478              |     |             |           |
| 30-Day Postoperative Failure to Rescue   | 1.02 (0.87 – 1.21)                       | 1.01 (0.85 – 1.19) | 1.02 (0.87 – 1.21) | 113 | 146         | 11688     |
|                                          | 0.797                                    | 0.957              | 0.797              |     |             |           |
| 30-Day Postoperative Pneumonia           | 0.93 (0.77 – 1.13)                       | 0.98 (0.82 – 1.16) | 0.93 (0.77 – 1.13) | 113 | 146         | 136005    |
|                                          | 0.524                                    | 0.812              | 0.524              |     |             |           |
| 30-Day Postoperative Renal               | 1.05 (0.86 – 1.28)                       | 1.12 (0.94 – 1.35) | 1.05 (0.86 – 1.28) | 113 | 146         | 136224    |
| Complications                            | 0.644                                    | 0.258 <sup>´</sup> | 0.644              |     |             |           |
| 30-Day Postoperative Return to Operating | 0.92 (0.82 - 1.04)                       | 0.93 (0.83 – 1.04) | 0.92 (0.82 – 1.02) | 113 | 146         | 136319    |
| Room                                     | 0.236                                    | 0.254              | 0.166              |     |             |           |
| 30-Day Postoperative Sepsis              | 0.92 (0.75 – 1.13)                       | 0.97 (0.80 – 1.16) | 0.91 (0.75 – 1.11) | 113 | 146         | 132955    |
|                                          | 0.481                                    | 0.754              | 0.396              |     |             |           |
| 30-Day Postoperative Surgical Site       | 0.95 (0.82 – 1.09)                       | 0.97 (0.85 – 1.11) | 0.95 (0.82 - 1.09) | 113 | 146         | 134990    |
| Infection                                | 0.496                                    | 0.697              | 0.496              |     |             |           |
| 30-Day Postoperative Urinary Tract       | 0.91 (0.76 – 1.08)                       | 0.91 (0.77 – 1.09) | 0.91 (0.77 – 1.08) | 113 | 146         | 136319    |
| Infection                                | 0.338                                    | 0.367              | 0.346              |     |             |           |

#### TABLE S14. Summary of Per-Protocol Analyses of the Association between Trial Arm Assignment and Patient Outcomes

NOTE: Estimates are from 3-level hierarchical logistic regression models that regress 30-day death/serious morbidity study on arm assignment (Flexible Policy vs. Standard Policy). Models control for programlevel tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) and include both program-level and hospital-level random intercepts. **Model 1** was a 3-level hierarchical logistic regression model with program- and hospital-level random intercepts. **Model 2** was a 2-level hierarchical logistic regression model with program random intercepts. **Model 3** was a 2-level hierarchical logistic regression model with hospital random intercepts. Per-protocol analyses were run on a subset of the FIRST Trial sample comprised of programs that were adherent to study arm conditions. Adherent Standard Policy programs were those in which program directors reported zero policy deviations from 2015 ACGME duty hour standards. Adherent Flexible Policy programs were those in which program directors reported one or more of the following deviations from 2015 ACGME duty standards, per FIRST Trial protocol: 1) PGY1 shifts can exceed 16 hours, 2) PGY2+ shifts can exceed 28 hours, 3) 14 hours off after 24-hour shifts not required, 4) 8-10 hours off between shifts not required.

| TABLE S15. As-Treated Analysis of the Effect of Actual Exposure to Flexible Policy on Patient Outcomes: 30-D | ay |
|--------------------------------------------------------------------------------------------------------------|----|
| Postoperative Death/Serious Morbidity (Primary Patient Outcome)                                              | -  |

| Exposure Measure                       | Odds Ratio (92%Cl)<br>P-Value |                    |                    |  |  |
|----------------------------------------|-------------------------------|--------------------|--------------------|--|--|
|                                        | Model 1                       | Model 2            | Model 3            |  |  |
|                                        |                               |                    |                    |  |  |
| Number of departures from ACGME        | 0.99 (0.97 – 1.02)            |                    |                    |  |  |
| standards                              | 0.606                         |                    |                    |  |  |
|                                        |                               |                    |                    |  |  |
| No (Zero) departures                   |                               | Reference          |                    |  |  |
| One departure                          |                               | 1.04 (0.79 – 1.36) |                    |  |  |
|                                        |                               | 0.820              |                    |  |  |
| Two departures                         |                               | 0.98 (0.81 – 1.20) |                    |  |  |
|                                        |                               | 0.891              |                    |  |  |
| Three departures                       |                               | 0.88 (0.70 – 1.11) |                    |  |  |
|                                        |                               | 0.348              |                    |  |  |
| Four departures                        |                               | 0.98 (0.88 – 1.09) |                    |  |  |
|                                        |                               | 0.726              |                    |  |  |
|                                        |                               |                    |                    |  |  |
| PGY1 duty hours can exceed 16          |                               |                    | 0.83 (0.66 – 1.04) |  |  |
| hours                                  |                               |                    | 0.152              |  |  |
| PGY2+ duty hours can exceed 28         |                               |                    | 1.11 (0.89 – 1.37) |  |  |
| hours                                  |                               |                    | 0.408              |  |  |
| Residents don't require 14 hours off   |                               |                    | 1.22 (0.97 – 1.54) |  |  |
| after 24-hour duty                     |                               |                    | 0.126              |  |  |
| Residents don't require 8-10 hours off |                               |                    | 0.86 (0.70 – 1.05) |  |  |
| between shifts                         |                               |                    | 0.185              |  |  |

N Programs = 115 programs; N Hospitals = 148 hospitals; N NSQIP Cases = 138691 cases.

NOTE: Estimates are from 3-level hierarchical logistic regression models that regress 30-day death/serious morbidity on study arm assignment (Flexible Policy vs. Standard Policy) and measures of actual program-level exposure to deviations from ACGME duty hour standards. All models control for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) and include both program-level and hospital-level random intercepts. In **Model 1**, the single exposure variable in the model was a count from 0-4 of the number of the following deviations from ACGME duty hour standards that were implemented at an institution (regardless of study arm assignment): 1) PGY1 shifts can exceed 16 hours, 2) PGY2+ shifts can exceed 28 hours, 3) 14 hours off after 24-hour shifts not required, 4) 8-10 hours off between shifts not required. In **Model 2**, the number of deviations in 2015 ACGME standards implemented at an institution were entered as separate categorical exposure variables to capture any nonlinear cumulative effect of departure from 2015 ACGME standards on resident perceptions. In **Model 3**, all four deviations from ACGME standards were entered in the model simultaneously to investigate whether departures from specific 2015 standards were associated with resident perceptions.

### TABLE S16. Instrumental Variables (IV) Estimates of the Local Average Treatment Effect (LATE): 30-Day Postoperative Death or Serious Morbidity (*Primary Patient Outcome*)

| Model                                                                                                      | Coefficient (92% CI)    | P-Value |
|------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| Linear Probability Models (LPM) (for Comparison)                                                           |                         |         |
| Model 1: 2-Level Hierarchical LPM with Program Random Effects                                              | -0.003 (-0.010 - 0.005) | 0.551   |
| Model 2: 2-Level Hierarchical LPM with Hospital Random Effects                                             | -0.004 (-0.012 - 0.004) | 0.350   |
| Model 3: Non-hierarchical LPM with Program Clustered Robust Standard Errors                                | -0.003 (-0.010 – 0.005) | 0.490   |
| Model 4: Non-Hierarchical LPM with Hospital Clustered Robust Standard Errors                               | -0.003 (-0.011 – 0.005) | 0.492   |
| Instrumental Variables (IV) Models                                                                         |                         |         |
| Model 5: TSLS IV with Program Clustered Robust Standard Errors                                             | -0.003 (-0.011 – 0.005) | 0.487   |
| Model 6: 2-Level Hierarchical IV with Program Random Effects (G2SLS, Swamy-Arora variance components)      | -0.003 (-0.010 – 0.005) | 0.544   |
| Model 7: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Swamy-Arora variance components)     | -0.003 (-0.010 – 0.005) | 0.562   |
| Model 8: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Baltagi-Chang variance components)   | -0.003 (-0.010 – 0.005) | 0.562   |
|                                                                                                            |                         |         |
| Model 9: TSLS IV with Hospital Clustered Robust Standard Errors                                            | -0.003 (-0.011 – 0.005) | 0.490   |
| Model 10: 2-Level Hierarchical IV with Hospital Random Effects (G2SLS, Swamy-Arora variance components)    | -0.004 (-0.012 – 0.004) | 0.348   |
| Model 11: 2-Level Hierarchical IV with Hospital Random Effects (EC2SLS, Swamy-Arora variance components)   | -0.004 (-0.012 - 0.004) | 0.423   |
| Model 12: 2-Level Hierarchical IV with Hospital Random Effects (EC2SLS, Baltagi-Chang variance components) | -0.004 (-0.012 - 0.004) | 0.423   |

N Programs = 115 programs; N NSQIP Cases = 138691 cases.

**Model 1** is a 2-level hierarchical linear probability model regressing patient outcomes on assignment to Flexible Policy (vs. Standard Policy) with program-level random intercepts and controls for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs). **Model 2** is a 2-level hierarchical linear probability model regressing patient outcomes on assignment to Flexible Policy (vs. Standard Policy) with program-level random intercepts and controls for programs). **Model 3** is a non-hierarchical linear probability model regressing outcomes on study arm assignment and controls for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) with program-level clustered standard errors. **Model 4** is a non-hierarchical linear probability model regressing outcomes on study arm assignment and controls for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) with program-level clustered standard errors. **Model 4** is a non-hierarchical linear probability model regressing outcomes on study arm assignment and controls for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) with program-level clustered standard errors. **Model 5** is a non-hierarchical tere of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) with nospital-level clustered standard errors. **Model 5** is a non-hierarchical stope stope regressing outcomes on study arm assignment with program nelvel tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs) with nospital-level clustered standard errors. **Model 5** is a non-hierarchical teres of stope stope estimate of the effect of Flexible Policy (r

# TABLE S17. Unadjusted Intent-to-Treat Estimate of the Effect of Assignment to Flexible Policy on Resident Dissatisfaction and Wellbeing (*Primary Resident Outcomes*)

| REGRESSOR                                                       | ODDS RATIO (95% CONFIDENCE INTERVAL)                 |                                           |  |
|-----------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|--|
|                                                                 | (Very) Dissatisfied:<br>Overall Education<br>Quality | (Very) Dissatisfied: Overall<br>Wellbeing |  |
| Flexible Policy (vs. Standard Policy)                           | 1.08 (0.77-1.52)                                     | 1.31 (0.99-1.74)                          |  |
| 2013 (Baseline) 30-Day Postoperative Death/Serious<br>Morbidity |                                                      |                                           |  |
| Tertile 1                                                       | 1.11 (0.61-2.00)                                     | 1.30 (0.78-2.19)                          |  |
| Tertile 2                                                       | 0.81 (0.44-1.49)                                     | 1.21 (0.71-2.04)                          |  |
| Tertile 3                                                       | 0.91 (0.50-1.65)                                     | 1.20 (0.72-2.01)                          |  |
| Baseline Data Not Available                                     | Reference                                            | Reference                                 |  |
| Constant                                                        | 0.10 (0.06-0.18)                                     | 0.10 (0.06-0.16)                          |  |
| Variance Components                                             |                                                      |                                           |  |
| Residency Program                                               | 0.44 (0.26-0.73)                                     | 0.28 (0.16-0.49)                          |  |
| N Residents                                                     | 3642                                                 | 3645                                      |  |
| N Residency Programs                                            | 117                                                  | 117                                       |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 5 integration points used in estimation. Dependent variables are coded '1' for residents reporting being 'very dissatisfied' or 'dissatisfied' and '0' for residents reporting being 'neutral,' 'satisfied' or 'very satisfied.' OR>1.00 indicate a higher odds of dissatisfaction among Flexible Policy arm residents.

# TABLE S18. Adjusted Intent-to-Treat Estimate of the Effect of Assignment to Flexible Policy on Resident Dissatisfaction with Education Quality and Wellbeing (*Primary Resident Outcomes*) with Inclusion of Program-Level Covariates

| REGRESSOR                                                    | ODDS RATIO (95% CONFIDENCE INTERVAL)<br>P-VALUE |                                   |  |
|--------------------------------------------------------------|-------------------------------------------------|-----------------------------------|--|
|                                                              | (Very) Dissatisfied:<br>Education Quality       | (Very) Dissatisfied:<br>Wellbeing |  |
| Flexible Policy (vs. Standard Policy)                        | 1.00 (0.72-1.41)<br>0.988                       | 1.20 (0.91-1.59)<br>0.199         |  |
| 2013 (Baseline) 30-Day Postoperative Death/Serious Morbidity |                                                 |                                   |  |
| Tertile 1                                                    | 0.84 (0.46-1.55)<br>0.579                       | 1.11 (0.65-1.88)<br>0.703         |  |
| Tertile 2                                                    | 0.62 (0.33-1.15)<br>0.127                       | 1.05 (0.61-1.78)<br>0.869         |  |
| Tertile 3                                                    | 0.69 (0.38-1.27)<br>0.233                       | 1.04 (0.62-1.76)<br>0.876         |  |
| Baseline Data Not Available                                  | Reference                                       | Reference                         |  |
| Female (Reference: Male)                                     | 1.26 (1.02-1.57)<br>0.036                       | 1.37 (1.13-1.67)<br>0.002         |  |
| Postgraduate Year (Reference: PGY1)                          |                                                 |                                   |  |
| PGY2                                                         | 0.92 (0.68-1.23)<br>0.569                       | 0.83 (0.64-1.08)<br>0.167         |  |
| PGY3                                                         | 0.83 (0.60-1.15)<br>0.268                       | 0.73 (0.55-0.97)<br>0.030         |  |
| PGY4                                                         | 0.93 (0.67-1.29)<br>0.659                       | 0.63 (0.46-0.85)<br>0.003         |  |
| PGY5                                                         | 0.58 (0.40-0.84)<br>0.004                       | 0.50 (0.36-0.70)<br><0.001        |  |
| Program Type (Reference: Academic)                           |                                                 |                                   |  |
| Community-Based                                              | 0.88 (0.62-1.25)<br>0.467                       | 0.91 (0.68-1.22)<br>0.539         |  |
| Military                                                     | 0.31 (0.05-1.89)<br>0.206                       | 0.74 (0.19-2.83)<br>0.656         |  |
| Geographic Region (Reference: Northeast)                     |                                                 |                                   |  |
| Southeast                                                    | 0.78 (0.48-1.25)<br>0.297                       | 0.85 (0.58-1.26)<br>0.429         |  |
| Midwest                                                      | 0.54 (0.35-0.84)<br>0.006                       | 0.58 (0.41-0.84)<br>0.004         |  |
| Southwest                                                    | 0.51 (0.28-0.94)<br>0.032                       | 0.66 (0.40-1.09)<br>0.102         |  |
| West                                                         | 0.88 (0.51-1.51)<br>0.639                       | 1.08 (0.69-1.67)<br>0.745         |  |
| Constant                                                     | 0.21 (0.11-0.40)<br><0.001                      | 0.17 (0.10-0.31)<br><0.001        |  |
| Variance Components                                          |                                                 |                                   |  |
| Residency Program                                            | 0.35 (0.20-0.62)                                | 0.20 (0.10-0.40)                  |  |
| N Residents                                                  | 3642                                            | 3645                              |  |
| N Residency Programs                                         | 117                                             | 117                               |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 7 integration points used in estimation. Dependent variables are coded '1' for residents reporting being 'very dissatisfied' or 'dissatisfied' and '0' for residents reporting being 'neutral,' 'satisfied' or 'very satisfied.' OR>1.00 indicate a higher odds of dissatisfaction among Flexible Policy arm residents.

#### TABLE S19. Primary Resident Outcomes, Summary of Subgroup Analyses

| Subgroup Comparison                                           | (Very) Dissatisfied:<br>Education Quality | (Very) Dissatisfied:<br>Wellbeing       |
|---------------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| Flexible Policy X Gender Subgroups                            | No Significant Interaction<br>(p=0.537)   | No Significant Interaction<br>(p=0.097) |
| Flexible Policy X Resident Level (PGY1 vs. PGY2-3 vs. PGY4-5) | No Significant Interaction<br>(p=0.018)†  | No Significant Interaction<br>(p=0.235) |
| Flexible Policy X Geographic Region                           | No Significant Interaction<br>(p=0.877)   | No Significant Interaction<br>(p=0.162) |
| Flexible Policy X Program Type                                | No Significant Interaction<br>(p=0.148)   | No Significant Interaction<br>(p=0.050) |

NOTE: Subgroup analyses were conducted by including an interaction term between Flexible Policy assignment variable and subgroup variables in logistic regression models with program-level clustered standard errors and controls for program-level tertile of 30-day postoperative death/serious morbidity (stratifying variable in randomization of residency programs). We report the p-value on the joint test for significant interactions across all subgroup interactions. †Not significant at the 0.05 or 0.01 level after Bonferroni correction for multiple subgroup tests (3 subgroups)

### TABLE S20. Per-Protocol Estimate of the Effect of Assignment to Flexible Policy on Resident Dissatisfaction with Education Quality and Wellbeing (*Primary Resident Outcomes*)

| REGRESSOR                                                       | ODDS RATIO (95% CONFIDENCE INTERVAL)<br>P-VALUE |                                |  |
|-----------------------------------------------------------------|-------------------------------------------------|--------------------------------|--|
|                                                                 | (Very) Dissatisfied:<br>Education Quality       | (Very) Dissatisfied: Wellbeing |  |
| Flexible Policy (vs. Standard Policy)                           | 1.09 (0.77-1.54)<br>0.623                       | 1.35 (1.02-1.80)<br>0.039      |  |
| 2013 (Baseline) 30-Day Postoperative Death/Serious<br>Morbidity |                                                 |                                |  |
| Tertile 1                                                       | 1.14 (0.61-2.12)<br>0.681                       | 1.30 (0.77-2.22)<br>0.327      |  |
| Tertile 2                                                       | 0.83 (0.44-1.58)<br>0.577                       | 1.21 (0.70-2.06)<br>0.496      |  |
| Tertile 3                                                       | 0.94 (0.50-1.75)<br>0.843                       | 1.15 (0.67-1.95)<br>0.616      |  |
| Baseline Data Not Available                                     | Reference                                       | Reference                      |  |
| Constant                                                        | 0.10 (0.06-0.18)<br><0.001                      | 0.10 (0.06-0.16)<br><0.001     |  |
| Variance Components                                             |                                                 |                                |  |
| Residency Program                                               | 0.45 (0.27-0.75)                                | 0.27 (0.15-0.48)               |  |
| N Residents                                                     | 3590                                            | 3592                           |  |
| N Residency Programs                                            | 115                                             | 115                            |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 5 integration points used in estimation. Dependent variables are coded '1' for residents reporting being 'very dissatisfied' or 'dissatisfied' and '0' for residents reporting being 'neutral,' 'satisfied' or 'very satisfied.' OR>1.00 indicate a higher odds of dissatisfaction among Flexible Policy arm residents.

| TABLE S21.   | As-Treated Estimate o  | f the Effe | ect of Assignment to | <b>Flexible Policy on</b> | Odds of Resident E | Being (Very) |
|--------------|------------------------|------------|----------------------|---------------------------|--------------------|--------------|
| Dissatisfied | with Education Quality | (Primary   | (Resident Outcome)   |                           |                    |              |

| REGRESSOR                                                       | ODDS RATIO (95% CONFIDENCE INTERVAL)<br>P-VALUE |                            |                            |  |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------|----------------------------|--|
|                                                                 | Model 1                                         | Model 2                    | Model 3                    |  |
| Sum of departures from ACGME standards                          | 1.01 (0.92-1.10)<br>0.838                       |                            |                            |  |
| One departure                                                   |                                                 | 1.58 (0.68-3.66)<br>0.283  |                            |  |
| Two departures                                                  |                                                 | 1.00 (0.44-2.29)<br>0.993  |                            |  |
| Three departures                                                |                                                 | 1.21 (0.55-2.67)<br>0.633  |                            |  |
| Four departures                                                 |                                                 | 1.05 (0.73-1.51)<br>0.813  |                            |  |
| No (Zero) departures                                            |                                                 | Reference                  |                            |  |
| DOV1 duty hours can avaged 16 hours                             |                                                 |                            | 1 27 (0 64 2 02)           |  |
| FGFT duty hours can exceed to hours                             |                                                 |                            | 0.415                      |  |
| PGY2+ duty hours can exceed 28 hours                            |                                                 |                            | 1.04 (0.49-2.22)<br>0.922  |  |
| Residents don't require 14 hours off after 24-hour duty         |                                                 |                            | 0.86 (0.38-1.96)<br>0.714  |  |
| Residents don't require 8-10 hours off between shifts           |                                                 |                            | 0.85 (0.39-1.83)<br>0.676  |  |
| 2013 (Baseline) 30-Day Postoperative<br>Death/Serious Morbidity |                                                 |                            |                            |  |
| Tertile 1                                                       | 1.11 (0.92-1.10)<br>0.730                       | 1.16 (0.64-2.11)<br>0.619  | 1.08 (0.58-2.00)<br>0.810  |  |
| Tertile 2                                                       | 0.81 (0.44-1.49)<br>0.506                       | 0.83 (0.45-1.53)<br>0.548  | 0.79 (0.43-1.46)<br>0.452  |  |
| Tertile 3                                                       | 0.92 (0.51-1.66)<br>0.774                       | 0.92 (0.51-1.68)<br>0.796  | 0.90 (0.49-1.65)<br>0.724  |  |
| Baseline Data Not Available                                     | Reference                                       | Reference                  | Reference                  |  |
| Constant                                                        | 0.11 (0.06-0.18)<br><0.001                      | 0.10 (0.06-0.17)<br><0.001 | 0.11 (0.06-0.19)<br><0.001 |  |
| Variance Components                                             |                                                 |                            |                            |  |
| Residency Program                                               | 0.44 (0.26-0.73)                                | 0.43 (0.26-0.72)           | 0.43 (0.26-0.72)           |  |
| N Residents                                                     | 3642                                            | 3642                       | 3642                       |  |
| N Residency Programs                                            | 117                                             | 117                        | 117                        |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 5 integration points used in estimation. Dependent variables are coded '1' for residents reporting being 'very dissatisfied' or 'dissatisfied' and '0' for residents reporting being 'neutral,' 'satisfied' or 'very satisfied.' OR>1.00 indicate a higher odds of dissatisfaction among Flexible Policy arm residents.

| TABLE S22.   | As-Treated Estimate of | f the Effect of Assignm | ent to Flexible Policy on | Odds of Resident Being (Very | ) |
|--------------|------------------------|-------------------------|---------------------------|------------------------------|---|
| Dissatisfied | with Wellbeing (Primar | y Resident Outcome)     | -                         |                              |   |

| REGRESSOR                                                       | ODDS RATIO (95% CONFIDENCE INTERVAL)<br>P-VALUE |                            |                            |  |
|-----------------------------------------------------------------|-------------------------------------------------|----------------------------|----------------------------|--|
|                                                                 | Model 1                                         | Model 2                    | Model 3                    |  |
| Sum of departures from ACGME standards                          | 1.07 (0.99-1.15)<br>0.091                       |                            |                            |  |
| One departure                                                   |                                                 | 2.21 (1.13-4.32)<br>0.020  |                            |  |
| Two departures                                                  |                                                 | 1.45 (0.75-2.80)<br>0.264  |                            |  |
| Three departures                                                |                                                 | 0.69 (0.33-1.46)<br>0.331  |                            |  |
| Four departures                                                 |                                                 | 1.38 (1.03-1.86)<br>0.033  |                            |  |
| No (Zero) departures                                            |                                                 | Reference                  |                            |  |
| PGY1 duty hours can exceed 16 hours                             |                                                 |                            | 1.40 (0.74-2.65)<br>0.301  |  |
| PGY2+ duty hours can exceed 28 hours                            |                                                 |                            | 0.92 (0.48-1.77)<br>0.812  |  |
| Residents don't require 14 hours off after 24-hour duty         |                                                 |                            | 0.97 (0.49-1.93)<br>0.924  |  |
| Residents don't require 8-10 hours off between shifts           |                                                 |                            | 1.03 (0.54-1.99)<br>0.920  |  |
| 2013 (Baseline) 30-Day Postoperative<br>Death/Serious Morbidity |                                                 |                            |                            |  |
| Tertile 1                                                       | 1.07 (0.99-1.15)<br>0.091                       | 1.35 (0.81-2.225)<br>0.249 | 1.31 (0.76-2.25)<br>0.327  |  |
| Tertile 2                                                       | 1.31 (0.78-2.19)<br>0.314                       | 1.29 (0.77-2.15)<br>0.333  | 1.21 (0.71-2.06)<br>0.482  |  |
| Tertile 3                                                       | 1.20 (0.72-2.02)<br>0.483                       | 1.18 (0.71-1.96)<br>0.522  | 1.20 (0.71-2.04)<br>0.491  |  |
| Baseline Data Not Available                                     | Reference                                       | Reference                  | Reference                  |  |
| Constant                                                        | 0.10 (0.06-0.16)<br><0.001                      | 0.10 (0.06-0.15)<br><0.001 | 0.10 (0.06-0.16)<br><0.001 |  |
| Variance Components                                             |                                                 |                            |                            |  |
| Residency Program                                               | 0.28 (0.16-0.49)                                | 0.25 (0.14-0.44)           | 0.28 (0.16-0.49)           |  |
| N Residents                                                     | 3645                                            | 3645                       | 3645                       |  |
| N Residency Programs                                            | 117                                             | 117                        | 117                        |  |

NOTE: Estimates are from a 3-level hierarchical logistic regression with hospital and program random intercepts. 5 integration points used in estimation. Dependent variables are coded '1' for residents reporting being 'very dissatisfied' or 'dissatisfied' and '0' for 'neutral', 'satisfied,' or 'very satisfied.' OR>1.00 indicate a higher odds of dissatisfaction among Flexible Policy arm residents.
# TABLE S23. Instrumental Variables (IV) Estimates of the Local Average Treatment Effect on Resident Dissatisfaction with Education Quality (Primary Resident Outcome)

| Model                                                                                                    | Coefficient (95% CI)   | P-Value |
|----------------------------------------------------------------------------------------------------------|------------------------|---------|
| Linear Probability Models (LPM) (for Comparison)                                                         |                        |         |
| Model 1: Non-hierarchical LPM with Program Clustered Robust Standard Errors                              | 0.006 (-0.027 - 0.038) | 0.722   |
| Model 2: 2-Level Hierarchical LPM with Program Random Effects                                            | 0.009 (-0.023 - 0.040) | 0.600   |
| Instrumental Variables (IV) Models                                                                       |                        |         |
| Model 3: TSLS IV with Program Clustered Robust Standard Errors                                           | 0.006 (-0.027 – 0.039) | 0.720   |
| Model 4: 2-Level Hierarchical IV with Program Random Effects (G2SLS, Swamy-Arora variance components)    | 0.009 (-0.025 - 0.043) | 0.602   |
| Model 5: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Swamy-Arora variance components)   | 0.007 (-0.027 – 0.041) | 0.682   |
| Model 6: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Baltagi-Chang variance components) | 0.007 (-0.026 - 0.040) | 0.678   |

N Programs = 117 programs; N Residents = 3642 cases

**Model 1** is an OLS linear probability model regressing resident outcomes on assignment to Flexible Policy (vs. Standard Policy) and tertiles of program-level observed rates of 2013 30-day postoperative death/serious morbidity with program-level clustered robust SEs (stratifying variable in randomization process). The reported coefficient corresponds to the effect of assignment to Flexible Policy on the probability of reporting dissatisfied or very dissatisfied vs. neutral, satisfied, or very satisfied (or a negative effect vs. a positive effect, or disagreement/strong disagreement vs. neutral, agreement or strong agreement). **Model 2** is a hierarchical linear probability model with program random intercepts. **Model 3** is a non-hierarchical two-stage least squares instrumental variables second-stage estimate where actual receipt of Flexible Policy (regardless of study arm) is instrumented by study arm assignment with program clustered robust SEs. **Model 5** is a hierarchical generalized two-stage least squares (G2SLS) second stage estimate of the effect of Flexible Policy instrumented by study arm assignment with program random intercepts. **Model 5** is a hierarchical error-corrected two-stage least squares (EC2SLS) second stage estimate of Flexible Policy instrumented by study arm assignment with program random intercepts using Swamy-Arora method for estimating variance components. **Model 6** is a hierarchical EC2SLS second stage estimate of Flexible Policy instrumented by study arm assignment with program random intercepts and Baltagi-Chang method for estimating variance components. The TSLS first stage study assignment coefficients were all > 0.95, all p<0.001. All first-stage F statistics were >2300.00, all p<0.001. All models controlled for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs).

# TABLE S24. Instrumental Variables (IV) Estimates of the Local Average Treatment Effect on Resident Dissatisfaction with Wellbeing (Primary Resident Outcome)

| Model                                                                                                    | Coefficient (95% CI)   | P-Value |
|----------------------------------------------------------------------------------------------------------|------------------------|---------|
| Linear Probability Models (LPM) (for Comparison)                                                         |                        |         |
| Model 1: Non-hierarchical LPM with Program Clustered Robust Standard Errors                              | 0.029 (-0.006 - 0.063) | 1.00    |
| Model 2: 2-Level Hierarchical LPM with Program Random Effects                                            | 0.031 (-0.001 – 0.063) | 0.056   |
| Instrumental Variables (IV) Models                                                                       |                        |         |
| Model 3: TSLS IV with Program Clustered Robust Standard Errors                                           | 0.030 (-0.005 – 0.064) | 0.094   |
| Model 4: 2-Level Hierarchical IV with Program Random Effects (G2SLS, Swamy-Arora variance components)    | 0.032 (-0.001 – 0.066) | 0.059   |
| Model 5: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Swamy-Arora variance components)   | 0.030 (-0.003 - 0.064) | 0.076   |
| Model 6: 2-Level Hierarchical IV with Program Random Effects (EC2SLS, Baltagi-Chang variance components) | 0.030 (-0.002 - 0.063) | 0.070   |

N Programs = 117 programs; N Residents = 3645 cases

**Model 1** is an OLS linear probability model regressing resident outcomes on assignment to Flexible Policy (vs. Standard Policy) and tertiles of program-level observed rates of 2013 30-day postoperative death/serious morbidity with program-level clustered robust SEs (stratifying variable in randomization process). The reported coefficient corresponds to the effect of assignment to Flexible Policy on the probability of reporting dissatisfied or very dissatisfied vs. neutral, satisfied, or very satisfied (or a negative effect vs. a positive effect, or disagreement/strong disagreement vs. neutral, agreement or strong agreement). **Model 2** is a hierarchical linear probability model with program random intercepts. **Model 3** is a non-hierarchical two-stage least squares instrumental variables second-stage estimate where actual receipt of Flexible Policy (regardless of study arm) is instrumented by study arm assignment with program clustered robust SEs. **Model 5** is a hierarchical generalized two-stage least squares (EC2SLS) second stage estimate of the effect of Flexible Policy instrumented by study arm assignment with program random intercepts. **Model 5** is a hierarchical error-corrected two-stage least squares (EC2SLS) second stage estimate of Flexible Policy instrumented by study arm assignment with program random intercepts using Swamy-Arora method for estimating variance components. **Model 6** is a hierarchical EC2SLS second stage estimate of Flexible Policy instrumented by study arm assignment with program random intercepts and Baltagi-Chang method for estimating variance components. The TSLS first stage study assignment coefficients were all > 0.95, all p<0.001. All first-stage F statistics were >2300.00, all p<0.001. All models controlled for program-level tertile of 2013 rates of 30-day postoperative death/serious morbidity (stratifying variable used in randomization of programs).

## F. NOTE ON ABSITE RESIDENT SURVEY RESPONSE RATES

The 2015 ABSITE Resident Survey was administered to all general surgery residents who took the January 2015 ABSITE examination (irrespective of whether training in a FIRST Trial-participating program), of which 4,330 were residents in the 117 general surgery residency programs that participated in the FIRST Trial. Of these 4,330 residents, 2220 residents were in the 59 programs randomized to Standard Policy, and 2110 residents were in the 58 programs randomized to Flexible Policy.

Of the 4,330 respondents in the FIRST Trial resident survey sample, 585 (13.05%) had missing values on all 34 survey items reported in the tables below.

#### **Overall Response Rates**

*Overall Response Rates.* Table S25 shows item-level missing-value frequencies and response rates for the FIRST Trial ABSITE Resident Survey sample for the resident outcomes we studied. Response rates for survey items ranged from 84% to 87%.

*Response Rates by Gender*. Table S26 presents item-level response rates by gender for outcomes we studied. There were no statistically significant gender differences in response rates for any of our primary or secondary endpoints in the FIRST Trial.

*Overall Response Rates by Postgraduate Year.* Item-level response rates by resident's postgraduate year (PGY) are reported in Table S27. PGY1, PGY4 and PGY5 residents had response rates exceeding 90%, but PGY2 and PGY3 response rates ranged in the 70-79% range (program-level cluster-corrected chi-square p-values all <0.01).

*Response Rates by Program Type.* Table S28 presents item-level response rates by program type. Community programs had the highest response rates (90%+ range), followed by military programs (approximately 89%) and academic programs (approximately 81%, program-level cluster-corrected chi-square p-values all <0.01).

*Response Rates by Geographic Region.* Table S29 presents item-level response rates by geographic region of program location. We found no regional differences in response rates for any of the survey items.

#### **Response Rates by Study Arm**

Table S30 shows item-level response rates and frequencies for missing values for the FIRST Trial ABSITE Resident Survey sample, by study arm. This table also provides p-values for chisquare tests of association between study arm and non-response for each item. We found no differences in response rates across study arms for any of the outcomes we studied. In our Statistical Analysis Plan (§F.3), we made provisions for various approaches to treat missing data. However, we chose not to impute values (singly or multiply) for the analyses we undertook in this report because all of the limited number of resident variables (e.g., PGY and gender) in this analysis were used as dependent variables. While the inclusion of outcome variables in imputation models for missing independent variables (Xs) is standard practice, to our knowledge, regression on imputed values in the dependent variable (Ys) is not supported strongly, if at all (some articles argue against it) due to noise (e.g. White et al. 2011; von Hippel 2007). Thus, we did not impute missing values in our analyses of resident outcomes. Moreover, nearly all missing data are due to residents not taking any part of the survey, thus all of the data are missing for that resident. Thus, a complete case analysis was performed where item response rates ranged from 84% to 87%.

# TABLE S25. 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample Sample

| SURVEY ITEM                                                                | MISSING | NON-    | TOTAL | ITEM     |
|----------------------------------------------------------------------------|---------|---------|-------|----------|
|                                                                            |         | MISSING |       | RESPONSE |
| Developed offset of data between one Delfant of the                        | 057     | 2.070   | 4.000 | RATE     |
| Perceived effect of duty hours on: Patient safety                          | 657     | 3,673   | 4,330 | 85%      |
| Perceived effect of duty hours on: Continuity of care                      | 652     | 3,678   | 4,330 | 85%      |
| Perceived effect of duty hours on: Attendance at required                  | 664     | 3,666   | 4,330 | 85%      |
|                                                                            | 005     | 0.005   | 4 000 | 050/     |
| Perceived effect of duty hours on: Ability to acquire clinical             | 665     | 3,665   | 4,330 | 85%      |
| Skills<br>Derectived effect of duty bours on: Ability to acquire operative | 664     | 2 666   | 1 220 | 050/     |
|                                                                            | 004     | 3,000   | 4,550 | 05 /0    |
| Perceived effect of duty hours on: Resident autonomy                       | 660     | 3 670   | 4 330 | 85%      |
| Perceived effect of duty hours on: Number of operations                    | 665     | 3,665   | 4,330 | 85%      |
| nerformed                                                                  | 005     | 5,005   | 4,000 | 0070     |
| Perceived effect of duty hours on: Availability for elective cases         | 660     | 3.670   | 4.330 | 85%      |
| Perceived effect of duty hours on: Availability for urgent cases           | 657     | 3.673   | 4.330 | 85%      |
| Perceived effect of duty hours on: Time to teach medical                   | 661     | 3.669   | 4.330 | 85%      |
| students                                                                   | •••     | 0,000   | .,    |          |
| Perceived effect of duty hours on: Relationship between                    | 656     | 3,674   | 4,330 | 85%      |
| interns/residents                                                          |         |         |       |          |
| Perceived effect of duty hours on: Professionalism                         | 659     | 3,671   | 4,330 | 85%      |
| Perceived effect of duty hours on: Morale                                  | 656     | 3,674   | 4,330 | 85%      |
| Perceived effect of duty hours on: Ability to prepare for cases            | 662     | 3,668   | 4,330 | 85%      |
| away from the hospital                                                     |         |         |       |          |
| Perceived effect of duty hours on: Ability to participate in               | 662     | 3,668   | 4,330 | 85%      |
| research                                                                   |         |         |       |          |
| Perceived effect of duty hours on: Job Satisfaction                        | 660     | 3,670   | 4,330 | 85%      |
| Perceived effect of duty hours on: Satisfaction with decision to           | 666     | 3,664   | 4,330 | 85%      |
| become a surgeon                                                           |         |         |       |          |
| Perceived effect of duty hours on: Time with family and friends            | 663     | 3,667   | 4,330 | 85%      |
| Perceived effect of duty hours on: Time for                                | 665     | 3,665   | 4,330 | 85%      |
| hobbies/extracurricular activities                                         |         |         |       |          |
| Perceived effect of duty hours on: Own health                              | 669     | 3,661   | 4,330 | 85%      |
| Perceived effect of duty hours on: Rest                                    | 662     | 3,668   | 4,330 | 85%      |
| Satisfaction with: Continuity of care                                      | 685     | 3,645   | 4,330 | 84%      |
| Satisfaction with: Patient safety                                          | 685     | 3,645   | 4,330 | 84%      |
| Satisfaction with: Work hours/scheduling                                   | 689     | 3,641   | 4,330 | 84%      |
| Satistaction with: Quality/ease of handoffs and transitions                | 691     | 3,639   | 4,330 | 84%      |
| Satisfaction with: Resident education quality                              | 688     | 3,642   | 4,330 | 84%      |

| TABLE S25 (continued). | 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial |
|------------------------|-------------------------------------------------------------------------|
| Resident Sample        |                                                                         |

| SURVEY ITEM                                                 | MISSING | NON-<br>MISSING | TOTAL | ITEM<br>RESPONSE<br>RATE |
|-------------------------------------------------------------|---------|-----------------|-------|--------------------------|
| Satisfaction with: Time for rest                            | 687     | 3,643           | 4,330 | 84%                      |
| Satisfaction with: Wellbeing                                | 685     | 3,645           | 4,330 | 84%                      |
| Satisfaction with: Work hour regulations                    | 686     | 3,644           | 4,330 | 84%                      |
| How often fatigue affected: personal safety                 | 678     | 3,652           | 4,330 | 84%                      |
| How often fatigue affected: patient safety                  | 678     | 3,652           | 4,330 | 84%                      |
| Frequency in last month: hand off active patient care issue | 565     | 3,765           | 4,330 | 87%                      |
| because of duty hour limits                                 |         |                 |       |                          |
| Frequency in last month: leave during operation because of  | 565     | 3,765           | 4,330 | 87%                      |
| duty hour limits                                            |         |                 |       |                          |
| Frequency in last month: miss operation because of duty     | 565     | 3,765           | 4,330 | 87%                      |
| hour limits                                                 |         |                 |       |                          |

# TABLE S26. 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial ResidentSample, by Gender

| SURVEY ITEM                                                                    | ITEM RE         | SPONSE | P-VALUE† |
|--------------------------------------------------------------------------------|-----------------|--------|----------|
|                                                                                | <b>RATE (%)</b> |        | •        |
|                                                                                | MALE            | FEMALE |          |
| Perceived effect of duty hours on: Patient safety                              | 85.62           | 83.65  | 0.30     |
| Perceived effect of duty hours on: Continuity of care                          | 85.69           | 83.82  | 0.32     |
| Perceived effect of duty hours on: Attendance at required educational          | 85.46           | 83.48  | 0.30     |
| conferences                                                                    |                 |        |          |
| Perceived effect of duty hours on: Ability to acquire clinical skills          | 85.35           | 83.59  | 0.36     |
| Perceived effect of duty hours on: Ability to acquire operative skills         | 85.38           | 83.59  | 0.35     |
| Perceived effect of duty hours on: Resident autonomy                           | 85.50           | 83.65  | 0.34     |
| Perceived effect of duty hours on: Number of operations performed              | 85.35           | 83.59  | 0.36     |
| Perceived effect of duty hours on: Availability for elective cases             | 85.54           | 83.59  | 0.32     |
| Perceived effect of duty hours on: Availability for urgent cases               | 85.58           | 83.71  | 0.33     |
| Perceived effect of duty hours on: Time to teach medical students              | 85.54           | 83.53  | 0.30     |
| Perceived effect of duty hours on: Relationship between interns/residents      | 85.58           | 83.77  | 0.34     |
| Perceived effect of duty hours on: Professionalism                             | 85.58           | 83.59  | 0.30     |
| Perceived effect of duty hours on: Morale                                      | 85.54           | 83.82  | 0.37     |
| Perceived effect of duty hours on: Ability to prepare for cases away from the  | 85.38           | 83.71  | 0.38     |
| hospital                                                                       |                 |        |          |
| Perceived effect of duty hours on: Ability to participate in research          | 85.35           | 83.77  | 0.41     |
| Perceived effect of duty hours on: Job Satisfaction                            | 85.38           | 83.82  | 0.41     |
| Perceived effect of duty hours on: Satisfaction with decision to become a      | 85.23           | 83.71  | 0.43     |
| surgeon                                                                        |                 |        |          |
| Perceived effect of duty hours on: Time with family and friends                | 85.31           | 83.77  | 0.42     |
| Perceived effect of duty hours on: Time for hobbies/extracurricular activities | 85.27           | 83.71  | 0.42     |
| Perceived effect of duty hours on: Own health                                  | 83.15           | 83.65  | 0.43     |
| Perceived effect of duty hours on: Rest                                        | 85.35           | 83.77  | 0.41     |
| Satisfaction with: Continuity of care                                          | 84.73           | 83.36  | 0.49     |
| Satisfaction with: Patient safety                                              | 84.73           | 83.36  | 0.49     |
| Satisfaction with: Work hours/scheduling                                       | 84.65           | 83.25  | 0.48     |
| Satisfaction with: Quality/ease of handoffs and transitions                    | 84.65           | 83.13  | 0.44     |
| Satisfaction with: Resident education quality                                  | 84.69           | 83.25  | 0.47     |
| Satisfaction with: Time for rest                                               | 84.69           | 83.30  | 0.49     |
| Satisfaction with: Wellbeing                                                   | 84.73           | 83.36  | 0.49     |
| Satisfaction with: Work hour regulations                                       | 84.73           | 83.30  | 0.48     |
| How often fatigue affected: personal safety                                    | 84.88           | 83.53  | 0.50     |
| How often fatigue affected: patient safety                                     | 84.88           | 83.53  | 0.50     |
| Frequency in last month: hand off active patient care issue because of duty    | 87.58           | 86.01  | 0.38     |
| hour limits                                                                    |                 |        | -        |
| Frequency in last month: leave during operation because of duty hour limits    | 87.58           | 86.01  | 0.38     |
| Frequency in last month: miss operation because of duty hour limits            | 87.58           | 86.01  | 0.38     |

†Program-level cluster-corrected chi-square p-values

| SURVEY ITEM                                                                            |       | ITEM RE | SPONSE | RATE (%) |       | P-VALUE† |
|----------------------------------------------------------------------------------------|-------|---------|--------|----------|-------|----------|
|                                                                                        | PGY1  | PGY2    | PGY3   | PGY4     | PGY5  |          |
| Perceived effect of duty hours on: Patient safety                                      | 94.64 | 71.79   | 75.11  | 93.47    | 94.60 | <0.01    |
| Perceived effect of duty hours on: Continuity of care                                  | 94.55 | 72.06   | 75.00  | 93.79    | 94.94 | <0.01    |
| Perceived effect of duty hours on: Attendance at required educational conferences      | 94.29 | 71.60   | 74.89  | 93.47    | 94.77 | <0.01    |
| Perceived effect of duty hours on: Ability to acquire clinical skills                  | 94.12 | 71.97   | 94.54  | 93.47    | 94.77 | <0.01    |
| Perceived effect of duty hours on: Ability to acquire operative skills                 | 94.12 | 71.79   | 75.00  | 93.63    | 94.44 | <0.01    |
| Perceived effect of duty hours on: Resident autonomy                                   | 94.20 | 72.06   | 74.89  | 9379     | 94.44 | <0.01    |
| Perceived effect of duty hours on: Number of operations performed                      | 94.20 | 71.69   | 74.77  | 93.63    | 94.60 | <0.01    |
| Perceived effect of duty hours on: Availability for elective cases                     | 94.29 | 71.97   | 74.77  | 93.63    | 94.77 | <0.01    |
| Perceived effect of duty hours on: Availability for urgent cases                       | 94.38 | 71.88   | 74.89  | 93.95    | 94.77 | <0.01    |
| Perceived effect of duty hours on: Time to teach medical students                      | 94.38 | 71.88   | 74.77  | 93.47    | 94.77 | <0.01    |
| Perceived effect of duty hours on: Relationship between interns/residents              | 94.38 | 71.97   | 74.89  | 93.79    | 94.94 | <0.01    |
| Perceived effect of duty hours on: Professionalism                                     | 94.29 | 71.88   | 74.77  | 93.79    | 94.94 | <0.01    |
| Perceived effect of duty hours on: Morale                                              | 94.29 | 71.97   | 75.00  | 93.79    | 94.94 | <0.01    |
| Perceived effect of duty hours on: Ability to prepare for cases away from the hospital | 94.38 | 71.79   | 75.11  | 93.15    | 94.60 | <0.01    |
| Perceived effect of duty hours on: Ability to participate in research                  | 94.38 | 71.88   | 75.00  | 93.31    | 94.44 | <0.01    |
| Perceived effect of duty hours on: Job satisfaction                                    | 94.55 | 71.79   | 75.00  | 93.47    | 94.44 | <0.01    |
| Perceived effect of duty hours on: Satisfaction with decision to become a surgeon      | 94.29 | 71.79   | 74.89  | 92.99    | 94.60 | <0.01    |
| Perceived effect of duty hours on: Time with family and friends                        | 94.29 | 71.79   | 74.89  | 93.47    | 94.60 | <0.01    |
| Perceived effect of duty hours on: Time for hobbies/extracurricular activities         | 94.20 | 71.79   | 75.00  | 93.31    | 94.44 | <0.01    |
| Perceived effect of duty hours on: Own health                                          | 94.38 | 71.51   | 74.66  | 93.31    | 94.44 | <0.01    |
| Perceived effect of duty hours on: Rest                                                | 94.38 | 71.88   | 74.89  | 93.31    | 94.60 | <0.01    |
| Satisfaction with: Continuity of care                                                  | 93.08 | 71.60   | 74.66  | 92.99    | 94.44 | <0.01    |
| Satisfaction with: Patient safety                                                      | 93.08 | 71.60   | 74.66  | 92.99    | 94.44 | <0.01    |
| Satisfaction with: Work hours/scheduling                                               | 92.91 | 71.60   | 74.66  | 92.99    | 94.10 | <0.01    |
| Satisfaction with: Quality/ease of handoffs and transitions                            | 92.91 | 71.32   | 74.54  | 92.99    | 94.44 | <0.01    |
| Satisfaction with: Resident education quality                                          | 92.99 | 71.51   | 74.66  | 92.99    | 94.27 | <0.01    |

TABLE S27. 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample, by Postgraduate Year (PGY)

†Program-level cluster-corrected chi-square p-values for tests of association between PG year and response rate

TABLE S27 (continued). 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample, by Postgraduate Year (PGY)

| SURVEY ITEM                                                                             | ITEM RESPONSE RATE (%) |       |       | P-VALUE† |       |       |
|-----------------------------------------------------------------------------------------|------------------------|-------|-------|----------|-------|-------|
|                                                                                         | PGY1                   | PGY2  | PGY3  | PGY4     | PGY5  |       |
| Satisfaction with: Time for rest                                                        | 93.08                  | 71.60 | 74.54 | 92.99    | 94.27 | <0.01 |
| Satisfaction with: Wellbeing                                                            | 93.17                  | 71.60 | 74.66 | 92.83    | 94.44 | <0.01 |
| Satisfaction with: Work hour regulations                                                | 93.17                  | 71.60 | 74.54 | 92.83    | 94.44 | <0.01 |
| How often fatigue affected: personal safety                                             | 93.60                  | 71.60 | 74.77 | 92.99    | 94.44 | <0.01 |
| How often fatigue affected: patient safety                                              | 93.60                  | 71.60 | 74.77 | 92.99    | 94.44 | <0.01 |
| What effect would a change in duty hour policy have on: Safety of patient care?         | 92.99                  | 71.32 | 74.66 | 92.99    | 94.10 | <0.01 |
| What effect would a change in duty hour policy have on: Continuity of care?             | 92.99                  | 71.32 | 74.66 | 92.99    | 94.10 | <0.01 |
| What effect would a change in duty hour policy have on: Quality of resident education?  | 92.91                  | 71.14 | 74.66 | 92.83    | 94.10 | <0.01 |
| Frequency in last month: hand off active patient care issue because of duty hour limits | 97.32                  | 73.36 | 76.38 | 96.34    | 97.13 | <0.01 |
| Frequency in last month: leave during operation because of duty hour limits             | 97.32                  | 73.36 | 76.38 | 96.34    | 97.13 | <0.01 |
| Frequency in last month: miss operation because of duty hour limits                     | 97.32                  | 73.36 | 76.38 | 96.34    | 97.13 | <0.01 |

†Program-level cluster-corrected chi-square p-values

| SURVEY ITEM                                                                            | ITEM RESPONSE RATE (%) |           |          | P-VALUE† |
|----------------------------------------------------------------------------------------|------------------------|-----------|----------|----------|
|                                                                                        | ACADEMIC               | COMMUNITY | MILITARY | _        |
| Perceived effect of duty hours on: Patient safety                                      | 82.18                  | 92.57     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Continuity of care                                  | 82.37                  | 92.47     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Attendance at required educational conferences      | 82.02                  | 92.38     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Ability to acquire clinical skills                  | 81.99                  | 92.47     | 86.36    | <0.01    |
| Perceived effect of duty hours on: Ability to acquire operative skills                 | 81.99                  | 92.47     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Resident autonomy                                   | 82.18                  | 92.29     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Number of operations performed                      | 82.02                  | 92.29     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Availability for elective cases                     | 82.12                  | 92.57     | 86.36    | <0.01    |
| Perceived effect of duty hours on: Availability for urgent cases                       | 82.18                  | 92.57     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Time to teach medical students                      | 82.06                  | 92.57     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Relationship between interns/residents              | 82.21                  | 92.57     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Professionalism                                     | 82.15                  | 92.47     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Morale                                              | 82.21                  | 92.57     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Ability to prepare for cases away from the hospital | 82.09                  | 92.38     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Ability to participate in research                  | 82.09                  | 92.38     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Job satisfaction                                    | 82.18                  | 92.29     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Satisfaction with decision to become a surgeon      | 82.06                  | 92.10     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Time with family and friends                        | 82.12                  | 92.29     | 86.36    | <0.01    |
| Perceived effect of duty hours on: Time for hobbies/extracurricular activities         | 82.02                  | 92.29     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Own health                                          | 81.99                  | 92.01     | 88.64    | <0.01    |
| Perceived effect of duty hours on: Rest                                                | 82.12                  | 92.29     | 88.64    | <0.01    |
| Satisfaction with: Continuity of care                                                  | 81.50                  | 92.01     | 88.64    | <0.01    |
| Satisfaction with: Patient safety                                                      | 81.50                  | 92.01     | 88.64    | <0.01    |
| Satisfaction with: Work hours/scheduling                                               | 81.40                  | 91.91     | 88.64    | <0.01    |
| Satisfaction with: Quality/ease of handoffs and transitions                            | 81.34                  | 91.91     | 88.64    | <0.01    |
| Satisfaction with: Resident education quality                                          | 81.43                  | 91.91     | 88.64    | <0.01    |

# TABLE S28. 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample, by Program Type

† Program-level cluster-corrected chi-square p-values

| <b>TABLE S28</b> (continued | ). 2015 ABSITE Resident Survey | <b>Overall Item Response Rates</b> | for FIRST Trial Resident Sample, | by Program Type |
|-----------------------------|--------------------------------|------------------------------------|----------------------------------|-----------------|
|-----------------------------|--------------------------------|------------------------------------|----------------------------------|-----------------|

| SURVEY ITEM                                                                             | ITEM RESPONSE RATE (%) P-V |           | P-VALUE† |       |
|-----------------------------------------------------------------------------------------|----------------------------|-----------|----------|-------|
|                                                                                         | ACADEMIC                   | COMMUNITY | MILITARY |       |
| Satisfaction with: Time for rest                                                        | 81.50                      | 91.82     | 88.64    | <0.01 |
| Satisfaction with: Wellbeing                                                            | 81.50                      | 92.01     | 88.64    | <0.01 |
| Satisfaction with: Work hour regulations                                                | 81.46                      | 92.01     | 88.64    | <0.01 |
| How often fatigue affected: personal safety                                             | 81.71                      | 92.01     | 88.64    | <0.01 |
| How often fatigue affected: patient safety                                              | 81.71                      | 92.01     | 88.64    | <0.01 |
| Frequency in last month: hand off active patient care issue because of duty hour limits | 84.45                      | 94.24     | 90.91    | <0.01 |
| Frequency in last month: leave during operation because of duty hour limits             | 84.45                      | 94.24     | 90.91    | <0.01 |
| Frequency in last month: miss operation because of duty hour limits                     | 84.45                      | 94.24     | 90.91    | <0.01 |

†Program-level cluster-corrected chi-square p-values

| SURVEY ITEM                                                      |           | ITEM R    | ESPONSE RA | TE (%)    |       | P-VALUE† |
|------------------------------------------------------------------|-----------|-----------|------------|-----------|-------|----------|
|                                                                  | NORTHEAST | SOUTHEAST | MIDWEST    | SOUTHWEST | WEST  |          |
| Perceived effect of duty hours on: Patient safety                | 82.82     | 88.21     | 85.05      | 87.60     | 80.71 | 0.11     |
| Perceived effect of duty hours on: Continuity of care            | 82.98     | 88.21     | 85.23      | 87.40     | 81.07 | 0.14     |
| Perceived effect of duty hours on: Attendance at required        | 82.57     | 88.21     | 85.05      | 87.21     | 80.36 | 0.09     |
| educational conferences                                          |           |           |            |           |       |          |
| Perceived effect of duty hours on: Ability to acquire clinical   | 82.74     | 87.66     | 85.05      | 87.40     | 80.54 | 0.14     |
| skills                                                           |           |           |            |           |       |          |
| Perceived effect of duty hours on: Ability to acquire operative  | 82.49     | 87.99     | 85.14      | 87.21     | 80.71 | 0.12     |
| skills                                                           |           |           |            |           |       |          |
| Perceived effect of duty hours on: Resident autonomy             | 82.65     | 88.10     | 85.05      | 87.40     | 80.89 | 0.13     |
| Perceived effect of duty hours on: Number of operations          | 82.65     | 87.99     | 84.86      | 87.21     | 80.71 | 0.12     |
| performed                                                        |           |           |            |           |       |          |
| Perceived effect of duty hours on: Availability for elective     | 82.65     | 87.99     | 85.32      | 87.40     | 80.54 | 0.12     |
| cases                                                            |           |           |            |           |       |          |
| Perceived effect of duty hours on: Availability for urgent cases | 82.82     | 88.10     | 85.23      | 87.21     | 80.89 | 0.14     |
| Perceived effect of duty hours on: Time to teach medical         | 82.65     | 87.99     | 85.23      | 87.02     | 80.89 | 0.14     |
| students                                                         |           |           |            |           |       |          |
| Perceived effect of duty hours on: Relationship between          | 82.74     | 88.21     | 85.23      | 87.40     | 80.89 | 0.12     |
| interns/residents                                                |           |           |            |           |       |          |
| Perceived effect of duty hours on: Professionalism               | 82.74     | 87.99     | 85.23      | 87.40     | 80.71 | 0.12     |
| Perceived effect of duty hours on: Morale                        | 82.82     | 88.21     | 85.14      | 87.40     | 80.89 | 0.12     |
|                                                                  |           |           |            |           |       |          |
| Perceived effect of duty hours on: Ability to prepare for cases  | 82.57     | 88.21     | 85.05      | 87.40     | 80.54 | 0.09     |
| away from the hospital                                           |           |           |            |           |       |          |
| Perceived effect of duty hours on: Ability to participate in     | 82.65     | 88.10     | 85.14      | 87.21     | 80.54 | 0.11     |
| research                                                         |           |           |            |           |       |          |
| Perceived effect of duty hours on: Job satisfaction              | 82.74     | 88.21     | 85.05      | 87.02     | 80.89 | 0.13     |
| Perceived effect of duty hours on: Satisfaction with decision    | 82.49     | 88.10     | 85.05      | 87.21     | 80.36 | 0.09     |
| to become a surgeon                                              |           |           |            |           |       |          |

# TABLE S29. 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample, by Geographic Region

† Program-level cluster-corrected chi-square p-values

TABLE S29 (continued). 2015 ABSITE Resident Survey Overall Item Response Rates for FIRST Trial Resident Sample, by Geographic Region

| SURVEY ITEM                                                  |           | P-VALUE†  |         |           |       |      |
|--------------------------------------------------------------|-----------|-----------|---------|-----------|-------|------|
|                                                              | NORTHEAST | SOUTHEAST | MIDWEST | SOUTHWEST | WEST  | -    |
| Perceived effect of duty hours on: Time with family and      | 82.74     | 87.99     | 85.05   | 87.02     | 80.71 | 0.13 |
| friends                                                      |           |           |         |           |       |      |
| Perceived effect of duty hours on: Time for                  | 82.57     | 88.21     | 84.95   | 87.02     | 80.54 | 0.12 |
| hobbies/extracurricular activities                           |           |           |         |           |       |      |
| Perceived effect of duty hours on: Own health                | 82.49     | 88.10     | 84.86   | 86.82     | 80.54 | 0.11 |
| Perceived effect of duty hours on: Rest                      | 82.65     | 88.10     | 85.05   | 87.21     | 80.71 | 0.12 |
| Satisfaction with: Continuity of care                        | 82.17     | 87.77     | 84.50   | 86.82     | 79.64 | 0.10 |
| Satisfaction with: Patient safety                            | 82.17     | 87.77     | 84.41   | 86.82     | 79.82 | 0.11 |
| Satisfaction with: Work hours/scheduling                     | 81.92     | 87.77     | 84.50   | 86.63     | 79.64 | 0.09 |
| Satisfaction with: Quality/ease of handoffs and transitions  | 81.92     | 87.66     | 84.41   | 86.43     | 79.82 | 0.11 |
| Satisfaction with: Resident education quality                | 82.17     | 87.66     | 84.41   | 86.82     | 79.46 | 0.10 |
| Satisfaction with: Time for rest                             | 82.17     | 87.55     | 84.50   | 86.82     | 79.64 | 0.11 |
| Satisfaction with: Wellbeing                                 | 82.17     | 87.77     | 84.41   | 86.82     | 79.82 | 0.11 |
| Satisfaction with: Work hour regulations                     | 82.08     | 87.66     | 84.50   | 86.82     | 79.82 | 0.11 |
| How often fatigue affected: personal safety                  | 82.25     | 87.77     | 84.77   | 86.82     | 80.18 | 0.13 |
| How often fatigue affected: patient safety                   | 82.25     | 87.77     | 84.77   | 86.82     | 80.18 | 0.13 |
| Frequency in last month: hand off active patient care issue  | 84.61     | 90.28     | 86.94   | 89.92     | 83.93 | 0.09 |
| because of duty hour limits                                  |           |           |         |           |       |      |
| Frequency in last month: leave during operation because of   | 84.61     | 90.28     | 86.94   | 89.92     | 83.93 | 0.09 |
| duty hour limits                                             |           |           |         |           |       |      |
| Frequency in last month: miss operation because of duty hour | 84.61     | 90.28     | 86.94   | 89.92     | 83.93 | 0.09 |
| limits                                                       |           |           |         |           |       |      |

† Program-level cluster-corrected chi-square p-values

# TABLE S30. 2015 ABSITE Resident Survey Item Response Rates for FIRST Trial Resident Sample by Study Arm

| SURVEY ITEM                                                                            |         | Standa          | rd Policy |                          |         | Flexible        | e Policy |                          | Chi-Square |
|----------------------------------------------------------------------------------------|---------|-----------------|-----------|--------------------------|---------|-----------------|----------|--------------------------|------------|
|                                                                                        | MISSING | NON-<br>MISSING | TOTAL     | ITEM<br>RESPONSE<br>RATE | MISSING | NON-<br>MISSING | TOTAL    | ITEM<br>RESPONSE<br>RATE | P-Value†   |
| Perceived effect of duty hours on: Patient safety                                      | 329     | 1,891           | 2220      | 85%                      | 328     | 1,782           | 2110     | 84%                      | 0.70       |
| Perceived effect of duty hours on: Continuity of care                                  | 328     | 1,892           | 2220      | 85%                      | 324     | 1,786           | 2110     | 85%                      | 0.75       |
| Perceived effect of duty hours on: Attendance at                                       | 334     | 1,886           | 2220      | 85%                      | 330     | 1,780           | 2110     | 84%                      | 0.75       |
| required educational conferences                                                       |         |                 |           |                          |         |                 |          |                          |            |
| Perceived effect of duty hours on: Ability to acquire<br>clinical skills               | 332     | 1,888           | 2220      | 85%                      | 333     | 1,777           | 2110     | 84%                      | 0.66       |
| Perceived effect of duty hours on: Ability to acquire<br>operative skills              | 335     | 1,885           | 2220      | 85%                      | 329     | 1,781           | 2110     | 84%                      | 0.79       |
| Perceived effect of duty hours on: Resident autonomy                                   | 332     | 1,888           | 2220      | 85%                      | 328     | 1,782           | 2110     | 84%                      | 0.76       |
| Perceived effect of duty hours on: Number of operations performed                      | 333     | 1,887           | 2220      | 85%                      | 332     | 1,778           | 2110     | 84%                      | 0.69       |
| Perceived effect of duty hours on: Availability for elective cases                     | 331     | 1,889           | 2220      | 85%                      | 329     | 1,781           | 2110     | 84%                      | 0.72       |
| Perceived effect of duty hours on: Availability for urgent cases                       | 330     | 1,890           | 2220      | 85%                      | 327     | 1,783           | 2110     | 85%                      | 0.74       |
| Perceived effect of duty hours on: Time to teach medical students                      | 332     | 1,888           | 2220      | 85%                      | 329     | 1,781           | 2110     | 84%                      | 0.73       |
| Perceived effect of duty hours on: Relationship between interns/residents              | 328     | 1,892           | 2220      | 85%                      | 328     | 1,782           | 2110     | 84%                      | 0.68       |
| Perceived effect of duty hours on: Professionalism                                     | 329     | 1,891           | 2220      | 85%                      | 330     | 1,780           | 2110     | 84%                      | 0.66       |
| Perceived effect of duty hours on: Morale                                              | 328     | 1,892           | 2220      | 85%                      | 328     | 1,782           | 2110     | 84%                      | 0.68       |
| Perceived effect of duty hours on: Ability to prepare for cases away from the hospital | 333     | 1,887           | 2220      | 85%                      | 329     | 1,781           | 2110     | 84%                      | 0.75       |
| Perceived effect of duty hours on: Ability to participate in research                  | 332     | 1,888           | 2220      | 85%                      | 330     | 1,780           | 2110     | 84%                      | 0.72       |
| Perceived effect of duty hours on: Job satisfaction                                    | 332     | 1,888           | 2220      | 85%                      | 328     | 1,782           | 2110     | 84%                      | 0.75       |
| Perceived effect of duty hours on: Satisfaction with decision to become a surgeon      | 333     | 1,887           | 2220      | 85%                      | 333     | 1,777           | 2110     | 84%                      | 0.68       |
| Perceived effect of duty hours on: Time with family and friends                        | 332     | 1,888           | 2220      | 85%                      | 331     | 1,779           | 2110     | 84%                      | 0.69       |

†Program-level cluster-corrected chi-square test for association between study arm and missing value

| SURVEY ITEM                                           |         | Standa  | rd Policy |          | Flexible Policy |         |       | Chi-     |           |
|-------------------------------------------------------|---------|---------|-----------|----------|-----------------|---------|-------|----------|-----------|
|                                                       | MISSING | NON-    | TOTAL     | ITEM     | MISSING         | NON-    | TOTAL | ITEM     | Square P- |
|                                                       |         | MISSING |           | RESPONSE |                 | MISSING |       | RESPONSE | Value†    |
|                                                       |         |         |           | RATE     |                 |         |       | RATE     |           |
| Perceived effect of duty hours on: Time for           | 334     | 1,886   | 2220      | 85%      | 331             | 1,779   | 2110  | 84%      | 0.74      |
| hobbies/extracurricular activities                    |         |         |           |          |                 |         |       |          |           |
| Perceived effect of duty hours on: Own health         | 337     | 1,883   | 2220      | 85%      | 332             | 1,778   | 2110  | 84%      | 0.77      |
| Perceived effect of duty hours on: Rest               | 333     | 1,887   | 2220      | 85%      | 329             | 1,781   | 2110  | 84%      | 0.75      |
| Satisfaction with: Continuity of care                 | 344     | 1,876   | 2220      | 85%      | 341             | 1,769   | 2110  | 84%      | 0.73      |
| Satisfaction with: Patient safety                     | 345     | 1,875   | 2220      | 84%      | 340             | 1,770   | 2110  | 84%      | 0.77      |
| Satisfaction with: Work hours/scheduling              | 346     | 1,874   | 2220      | 84%      | 343             | 1,767   | 2110  | 84%      | 0.73      |
| Satisfaction with: Quality/ease of handoffs and       | 347     | 1,873   | 2220      | 84%      | 344             | 1,766   | 2110  | 84%      | 0.73      |
| transitions                                           |         |         |           |          |                 |         |       |          |           |
| Satisfaction with: Resident education quality         | 346     | 1,874   | 2220      | 84%      | 342             | 1,768   | 2110  | 84%      | 0.75      |
| Satisfaction with: Time for rest                      | 345     | 1,875   | 2220      | 84%      | 342             | 1,768   | 2110  | 84%      | 0.73      |
|                                                       |         |         |           |          |                 |         |       |          |           |
| Satisfaction with: Wellbeing                          | 344     | 1,876   | 2220      | 85%      | 341             | 1,769   | 2110  | 84%      | 0.73      |
|                                                       |         |         |           |          |                 |         |       |          |           |
| Satisfaction with: Work hour regulations              | 344     | 1,876   | 2220      | 85%      | 342             | 1,768   | 2110  | 84%      | 0.72      |
| How often fatigue affected: personal safety           | 342     | 1,878   | 2220      | 85%      | 336             | 1,774   | 2110  | 84%      | 0.79      |
| How often fatigue affected: patient safety            | 342     | 1,878   | 2220      | 85%      | 336             | 1,774   | 2110  | 84%      | 0.79      |
| Frequency in last month: hand off active patient care | 276     | 1944    | 2220      | 88%      | 289             | 1821    | 2110  | 86%      | 0.47      |
| issue because of duty hour limits                     |         |         |           |          |                 |         |       |          |           |
| Frequency in last month: leave during operation       | 276     | 1944    | 2220      | 88%      | 289             | 1821    | 2110  | 86%      | 0.47      |
| because of duty hour limits                           |         |         |           |          |                 |         |       |          |           |
| Frequency in last month: miss operation because of    | 276     | 1944    | 2220      | 88%      | 289             | 1821    | 2110  | 86%      | 0.47      |
| duty hour limits                                      |         |         |           |          |                 |         |       |          |           |

# TABLE S30 (continued). 2015 ABSITE Resident Survey Item Response Rates for FIRST Trial Resident Sample by Study Arm

†Program-level cluster-corrected chi-square test for association between study arm and missing value

# **G. PATIENT OUTCOMES RISK ADJUSTMENT VARIABLES**

#### **30-Day Postoperative Death/Serious Morbidity (Primary Outcome)**

List of patient characteristics included in adjusted models:

- Age (age <65 (reference), 65-74, 75-84, 85+)
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative death/serious morbidity
- Emergency/urgent surgery (reference: not emergency/urgent)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Male sex (reference: female)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)

Note: Using an expanded list of covariates (from ACS NSQIP model for 30-day postoperative mortality) did not alter our results

#### **30-Day Postoperative Death (Secondary Outcome)**

- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative death
- Age (in years)
- Preoperative albumin
- Disseminated cancer (reference: none)
- Serum glutamic oxidase transaminase >40 (reference:  $\leq$ 40)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Ascites (reference: none)
- Preoperative platelet count<150 (reference:  $\geq$ 150)
- Dyspnea (none (reference), at rest, exertional)
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Inpatient surgery setting (reference: outpatient)
- Preoperative ventilator dependence (reference: none)
- Alkaline phosphatase>125 (reference:  $\leq 125$ )
- Emergency/urgent surgery (reference: not emergency/urgent)
- Chronic obstructive pulmonary disease (reference: none)
- Preoperative prothrombin time>35 (reference:  $\leq$ 35)
- Preoperative weight loss >10% (reference: none)
- Congestive heart failure (reference: none)
- Preoperative blood urea nitrogen>40 (reference:  $\leq$ 40)
- Steroid use (reference: none)
- Preoperative sodium >145 (reference:  $\leq$ 145)
- Transfer status (admit from home (reference), transfer from acute care, transfer from chronic care, transfer from other facility, transfer from outside emergency department)
- Current smoker (reference: not current smoker)
- Preoperative hematocrit >45 (reference:  $\leq$ 45)
- Preoperative dialysis (reference: none)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Preoperative white blood cell count  $\leq 4.5$  (reference: >4.5)

#### **30-Day Postoperative Serious Morbidity (Secondary Outcome)**

- Age (age <65 (reference), 65-74, 75-84, 85+)
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative serious morbidity
- Emergency/urgent surgery (reference: not emergency/urgent)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Male sex (reference: female)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)

#### **30-Day Postoperative Any Morbidity (Secondary Outcome)**

- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative any morbidity
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Inpatient surgery setting (reference: outpatient)
- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)
- Preoperative albumin
- Preoperative creatinine >1.2 (reference:  $\leq 1.2$ )
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Age
- Current smoker (reference: none)
- Work relative value unit
- Hispanic (no (reference), yes, unknown), preoperative functional status (independent (reference), partially dependent, totally dependent)
- Preoperative ventilator dependence (reference: none)
- Bleeding disorder (reference: none)
- Serum glutamic oxidase transaminase >40 (reference:  $\leq$ 40)
- Steroid use (reference: none)
- Preoperative blood urea nitrogen>40 (reference:  $\leq$ 40)
- Dyspnea (none (reference), at rest, exertional)
- Emergency/urgent surgery (reference: not emergency/urgent)
- Chronic obstructive pulmonary disease (reference: none)
- Preoperative prothrombin time>35 (reference:  $\leq$ 35)
- Congestive heart failure (reference: none)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)
- Hypertension (reference: none)
- Disseminated cancer (reference: none)
- Diabetes (none (reference), insulin, oral)
- Preoperative dialysis (reference: none)
- Male sex (reference: female)
- Preoperative alkaline phosphatase>125 (reference:  $\leq$ 125)
- Preoperative transfusion (reference: none)
- Ascites (reference: none)

## **30-Day Postoperative Any Morbidity (continued)**

- Preoperative weight loss >10% (reference: none)
- Preoperative hematocrit >45 (reference:  $\leq$ 45)
- Preoperative platelet count (<150, 150-400 (reference), >400)
- Preoperative renal failure (reference: none)
- Preoperative white blood cell count >11 (reference:  $\leq 11$ )
- Preoperative sodium (<135, 135-145 (reference), >145)

#### **30-Day Postoperative Failure-to-Rescue (Secondary Outcome)**

- Age (age <65 (reference), 65-74, 75-84, 85+)
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative failure-to-rescue
- Emergency/urgent surgery (reference: not emergency/urgent)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Male sex (reference: female)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)

#### **30-Day Postoperative Pneumonia (Secondary Outcome)**

- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative pneumonia
- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)
- Inpatient surgery (reference: outpatient)
- Age
- Current smoker (reference: not current smoker)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Chronic obstructive pulmonary disease (reference: none)
- Male sex (reference: female)
- Hispanic (no (reference), yes, unknown)
- Preoperative albumin
- Preoperative creatinine >1.2 (reference:  $\leq 1.2$ )
- Work relative value unit, dyspnea (none (reference), at rest, exertional)
- Bleeding disorder (reference: none)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Preoperative transfusion (reference: none)
- Preoperative hematocrit >45 (reference:  $\leq$ 45)
- Ascites (reference: none)
- Steroid use (reference: none)
- Preoperative dialysis (reference: none)

#### **30-Day Postoperative Renal Failure (Secondary Outcome)**

- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)
- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative renal failure
- Preoperative creatinine >1.2 (reference:  $\leq 1.2$ )
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Inpatient surgery setting (reference: outpatient)
- Hypertension (reference: none)
- Preoperative albumin
- Male sex (reference: female)
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Serum glutamic oxidase transaminase >40 (reference:  $\leq$ 40)
- Dyspnea (none (reference), at rest, exertional)
- Current smoker (reference: not current smoker)
- Preoperative platelet count <150 (reference:  $\geq$ 150)
- Work relative value unit
- Ascites (reference: none)
- Preoperative weight loss >10% (reference: none)
- Disseminated cancer (reference: none)
- Age

#### **30-Day Postoperative Return to Operating Room (Secondary Outcome)**

- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative return to operating room
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Current smoker (reference: not current smoker)
- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)
- Male sex (reference: female)
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)
- Work relative value unit
- Hypertension (reference: none)
- Serum glutamic oxidase transaminase >40 (reference:  $\leq$ 40)
- Bleeding disorder (reference: none)
- Preoperative albumin
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Chronic obstructive pulmonary disease (reference: none)
- Preoperative dialysis (reference: none)
- Preoperative weight loss >10% (reference: none)
- Steroid use (reference: none)
- Preoperative sodium <135 (reference:  $\geq$ 135)
- Preoperative prothrombin time>35 (reference:  $\leq$ 35)

#### **30-Day Postoperative Sepsis (Secondary Outcome)**

- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative sepsis
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Inpatient surgery setting (reference: outpatient)
- Preoperative albumin
- Male sex (reference: female)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Preoperative white blood cell count >11 (reference:  $\leq 11$ )
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)
- Chronic obstructive pulmonary disease (reference: none)
- Work relative value unit
- Preoperative alkaline phosphatase>125 (reference:  $\leq 125$ )
- Steroid use (reference: none)
- Preoperative weight loss >10% (reference: none)
- Hypertension (reference: none)
- Disseminated cancer (reference: none)
- Current smoker (reference: not current smoker)
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Preoperative platelet count >400 (reference:  $\leq$ 400)
- Preoperative ventilator dependence (reference: none)
- Preoperative creatinine >1.2 (reference:  $\leq 1.2$ )
- Transfer status (admit from home (reference), transfer from acute care, transfer from chronic care, transfer from other facility, transfer from outside emergency department)
- Ascites (reference: none)
- Preoperative hematocrit <38 (reference:  $\geq 38$ )
- Bleeding disorder (reference: none)
- Emergency/urgent surgery (reference: not emergency/urgent)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Age

#### **30-Day Postoperative Surgical Site Infection (Secondary Outcome)**

- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative surgical site infection
- Body mass index classification (normal (reference), Class I obese, Class II obese, Class III obese, overweight, underweight)
- Inpatient surgery setting (reference: outpatient)
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Current smoker (reference: not current smoker)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)
- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)
- Work relative value unit
- Steroid use (reference: none)
- Disseminated cancer (reference: none)
- Diabetes (none (reference), insulin, oral)
- Hispanic (no (reference), yes, unknown)
- Preoperative platelet count >400 (reference:  $\leq$ 400)
- Preoperative alkaline phosphatase>125 (reference:  $\leq 125$ )
- Male sex (reference: female)
- Preoperative creatinine >1.2 (reference:  $\leq 1.2$ )
- Preoperative sodium <135 (reference:  $\geq$ 135)
- Emergency/urgent surgery (reference: not emergency/urgent)
- Preoperative ventilator dependence (reference: none)
- Preoperative renal failure (reference: none)
- Chronic obstructive pulmonary disease (reference: none)
- Preoperative dialysis (reference: none)
- Preoperative weight loss >10% (reference: none)
- Age
- Bleeding disorder (reference: none)
- Preoperative white blood cell count >11 (reference:  $\leq 11$ )

#### **30-Day Postoperative Urinary Tract Infection (Secondary Outcome)**

- ACS NSQIP outcome-specific CPT-based linear predictor for 30-day postoperative UTI
- Male sex (reference: female)
- Age
- American Society of Anesthesiologists (ASA) Physical Status Classification (normal (reference), mild systemic disease, severe systemic disease, life-threatening systemic disease/moribund)
- Preoperative functional status (independent (reference), partially dependent, totally dependent)
- Inpatient surgery setting (reference: outpatient)
- Patient race (White (reference), Black/African American, American Indian/Native Alaskan, Native Hawaiian/Pacific Islander, Asian, Unknown)
- Wound class (clean (reference), clean/contaminated, contaminated, dirty/infected)
- Steroid use (reference: none)
- Diabetes (none (reference), insulin, oral)
- Chronic obstructive pulmonary disease (reference: none)
- Preoperative dialysis (reference: none)
- Bleeding disorder (reference: none)
- Emergency/urgent surgery (reference: not emergency/urgent)
- Preoperative sodium <135 (reference:  $\geq$ 135)
- Preoperative hematocrit <38 (reference:  $\geq 38$ )
- Preoperative sepsis (none (reference), systemic inflammatory response syndrome (SIRS), sepsis, septic shock)

#### H. COMPARISON OF ENROLLED VERSUS NON-ENROLLED PROGRAMS AND HOSPITALS

#### TABLE S31. Characteristics of Programs Enrolled vs. Not Enrolled in the FIRST Trial

|                                             | Total         | Non-Enrolled  | Enrolled      | Р       | Valid N (Per Data Item) |          | ltem)    |
|---------------------------------------------|---------------|---------------|---------------|---------|-------------------------|----------|----------|
|                                             |               |               |               |         | Total                   | Non-     | Enrolled |
|                                             |               |               |               |         |                         | Enrolled |          |
| Program Type, n (%)                         |               |               |               |         | 251                     | 134      | 117      |
| Academic                                    | 118 (47.01)   | 48 (35.82)    | 70 (59.83)    | 0.001   |                         |          |          |
| Community                                   | 124 (49.40)   | 79 (58.96)    | 45 (38.46)    |         |                         |          |          |
| Military                                    | 9 (3.59)      | 7 (5.22)      | 2 (1.71)      |         |                         |          |          |
| Geographic Region, n (%)                    |               |               |               |         | 251                     | 134      | 117      |
| Northeast                                   | 85 (33.86)    | 51 (38.06)    | 34 (29.06)    | 0.214   |                         |          |          |
| Southeast                                   | 49 (19.52)    | 23 (17.16)    | 26 (22.22)    |         |                         |          |          |
| Midwest                                     | 58 (23.11)    | 25 (18.66)    | 33 (28.21)    |         |                         |          |          |
| Southwest                                   | 25 (9.96)     | 14 (10.45)    | 11 (9.40)     |         |                         |          |          |
| West                                        | 34 (13.55)    | 21 (15.67)    | 13 (11.11)    |         |                         |          |          |
| Number of Slots per year, mean (SD)         | 4.92 (2.11)   | 4.46 (1.93)   | 5.46 (2.18)   | < 0.001 | 251                     | 134      | 117      |
| Program Size (5-Year Average                | 4.16 (2.15)   | 3.67 (1.99)   | 4.71 (2.21)   | < 0.001 | 251                     | 134      | 117      |
| Number of QE Examinees), mean               |               |               |               |         |                         |          |          |
| (SD)                                        |               |               |               |         |                         |          |          |
| Proportion Residents: Male, mean            | 0.70 (0.11)   | 0.71 (0.12)   | 0.69 (0.11)   | 0.150   | 238                     | 125      | 113      |
| (SD)                                        |               |               |               |         |                         |          |          |
| Proportion Residents: International         | 0.22 (0.21)   | 0.25 (0.23)   | 0.17 (0.17)   | 0.003   | 238                     | 125      | 113      |
| Medical Graduates, mean (SD)                |               |               |               |         |                         |          |          |
| QE 1 <sup>st</sup> Attempt Pass Rate (2009- | 85.92 (12.31) | 83.79 (14.60) | 88.30 (8.57)  | 0.004   | 239                     | 126      | 113      |
| 2013), mean (SD)                            |               |               |               |         |                         |          |          |
| CE 1 <sup>st</sup> Attempt Pass Rate (2009- | 80.61 (13.94) | 78.52 (15.43) | 82.91 (11.72) | 0.015   | 238                     | 125      | 113      |
| 2013), mean (SD)                            |               |               |               |         |                         |          |          |

QE: American Board of Surgery Qualifying Examination (Written Boards) CE: American Board of Surgery Certifying Examination (Oral Boards) Data are program-level aggregate data from the American Board of Surgery.

| TABLE S32. Char | acteristics of Hospita | Is Enrolled and No | t Enrolled in the | <b>FIRST Trial</b> |
|-----------------|------------------------|--------------------|-------------------|--------------------|
|-----------------|------------------------|--------------------|-------------------|--------------------|

| Hospital Characteristic                              | Valid N per Data Item     |          | NOT IN FIRST    | IN FIRST        | P-Value            |
|------------------------------------------------------|---------------------------|----------|-----------------|-----------------|--------------------|
|                                                      | NOT IN FIRST <sup>†</sup> | IN FIRST | 1               |                 |                    |
| Total Bed Size, mean (SD)                            | 1044                      | 148      | 322.45 (257.93) | 577.87 (286.94) | <0.001ª            |
| Total Surgical Volume in 1000s, mean (SD) †          | 1044                      | 148      | 9.84 (9.90)     | 23.39 (16.09)   | <0.001 a           |
| Nurse-to-Bed Ratio, mean (SD)                        | 1044                      | 148      | 2.01 (1.18)     | 2.56 (0.90)     | <0.001 a           |
| Resident-to-Bed Ratio [source: CMS 2014], mean (SD)† | 698                       | 141      | 0.17 (0.22)     | 0.39 (0.26)     | <0.001 ª           |
| CMS Case Mix Index [source: CMS 2014], mean (SD)     | 698                       | 141      | 1.64 (0.25)     | 1.90 (0.24)     | <0.001 ª           |
| COTH Membership, frequency (%)                       | 1044                      | 148      | 209 (20.02%)    | 106 (71.62%)    | <0.001b            |
| CBSA Type, frequency (%)                             | 1044                      | 148      |                 |                 | 0.052 b            |
| Metro/Division                                       |                           |          | 979 (93.77%)    | 146 (98.65%)    |                    |
| Micro                                                |                           |          | 55 (5.27%)      | 2 (1.35%)       |                    |
| Rural                                                |                           |          | 10 (0.96%)      | 0 (0.00%)       |                    |
| Total Admission Volume in 1000s, mean (SD)           | 1044                      | 148      | 13.47 (12.30)   | 28.73 (14.20)   | <0.001 a           |
| Level 1 Trauma Center, frequency (%)                 | 1044                      | 148      | 200 (19.16%)    | 91 (61.49%)     | <0.001 b           |
| Geographic Region, frequency (%)                     | 1043                      | 148      |                 |                 | 0.789 <sup>b</sup> |
| Midwest                                              |                           |          | 266 (25.50%)    | 36 (24.32%)     |                    |
| West                                                 |                           |          | 168 (16.11%)    | 27 (18.24%)     |                    |
| South                                                |                           |          | 202 (19.37%)    | 23 (15.54%)     |                    |
| Northeast                                            |                           |          | 238 (22.82%)    | 36 (24.32%)     |                    |
| Southeast                                            |                           |          | 169 (16.20%)    | 26 (17.57%)     |                    |
| Performs Any Transplants                             | 1044                      | 148      | 240 (22.99%)    | 106 (71.62%)    | <0.001 b           |

N Hospitals NOT IN FIRST = 1044 hospitals. N Hospitals IN FIRST = 148 hospitals.

Unless otherwise noted, data are from American Hospital Association Fiscal Year 2013 Annual Survey of Hospitals. CMS 2014 data are from Centers for Medicare and Medicaid Services 2014 Payment Update Impact File. For comparability, we compared FIRST Trial hospitals to those hospitals that reported any residency training approval by ACGME to AHA. †IMPORTANT NOTE: Hospitals in comparison group may or may not be affiliated with a General Surgery residency program. There is no reliable roster of hospitals in the U.S. affiliated with specific ACGME residency programs. Hospitals in Guam, Puerto Rico, Virgin Islands (US), American Samoa, and Mariana Islands not included. [a] Two-tailed t-test [b] Chi-square test of association

## I. NUMBER OF VALID OBSERVATIONS FOR PROGRAM, HOSPITAL, AND PATIENT DATA

#### TABLE S33A. Number of Valid Observations for Program, Hospital, and Patient Outcomes Data

| CHARACTERISTICS                                            |               | ION-MISSING N |              | N MISSING    |          |          |  |
|------------------------------------------------------------|---------------|---------------|--------------|--------------|----------|----------|--|
|                                                            | ALL PROGRAMS  | STANDARD      | FLEXIBLE     | ALL PROGRAMS | STANDARD | FLEXIBLE |  |
|                                                            |               | POLICY        | POLICY       |              | POLICY   | POLICY   |  |
| Residency Program Characteristics                          |               |               |              |              |          |          |  |
| Program Type                                               | 117 (100%)    | 59 (100%)     | 58 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Geographic Region                                          | 117 (100%)    | 59 (100%)     | 58 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Number of Residents per Program                            | 117 (100%)    | 59 (100%)     | 58 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 5-Year Average Number of ABS QE Examinees                  | 117 (100%)    | 59 (100%)     | 58 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Proportion Male Residents                                  | 113 (97%)     | 58 (98%)      | 55 (95%)     | 4 (3%)       | 1 (2%)   | 3 (5%)   |  |
| Proportion International Medical Graduate                  | 113 (97%)     | 58 (98%)      | 55 (95%)     | 4 (3%)       | 1 (2%)   | 3 (5%)   |  |
| Qualifying Exam % Pass 1 <sup>st</sup> Attempt (2009-2013) | 113 (97%)     | 58 (98%)      | 55 (95%)     | 4 (3%)       | 1 (2%)   | 3 (5%)   |  |
| Certifying Exam % Pass 1st Attempt (2009-2014)             | 113 (97%)     | 58 (98%)      | 55 (95%)     | 4 (3%)       | 1 (2%)   | 3 (5%)   |  |
| Hospital Characteristics                                   |               |               |              |              |          |          |  |
| Total Bed Size                                             | 148 (100%)    | 70 (100%)     | 78 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Total Surgical Volume                                      | 148 (100%)    | 70 (100%)     | 78 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Nurse-to-Bed Ratio                                         | 148 (100%)    | 70 (100%)     | 78 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Resident-to-Bed Ratio                                      | 141 (95%)     | 66 (94%)      | 75 (96%)     | 7 (5%)       | 4 (6%)   | 3 (4%)   |  |
| CMS Case Mix Index                                         | 141 (95%)     | 66 (94%)      | 75 (96%)     | 7 (5%)       | 4 (6%)   | 3 (4%)   |  |
| COTH Membership                                            | 148 (100%)    | 70 (100%)     | 78 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| ANCC Nursing Magnet Status                                 | 148 (100%)    | 70 (100%)     | 78 (100%)    | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| Prior Year (2013) Rate of 30-Day Postop. DSM               | 143 (97%)     | 69 (99%)      | 74 (95%)     | 5 (3%)       | 1 (1%)   | 4 (5%)   |  |
| Patient Outcomes                                           |               |               |              |              |          |          |  |
| 30-Day Postoperative Death/Serious Morbidity               | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Death                                 | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Serious Morbidity                     | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Any Morbidity                         | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Failure-to-Rescue                     | 11937 (100%)  | 5649 (100%)   | 6288 (100%)  | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Pneumonia                             | 137375 (100%) | 65719 (100%)  | 72656 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Renal Failure                         | 138596 (100%) | 65805 (100%)  | 72791 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Unplanned Reoperation                 | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Sepsis                                | 135258 (100%) | 64237 (100%)  | 71021 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative SSI                                   | 137346 (100%) | 65180 (100%)  | 72166 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |
| 30-Day Postoperative Urinary Tract Infection               | 138691 (100%) | 65849 (100%)  | 72842 (100%) | 0 (0%)       | 0 (0%)   | 0 (0%)   |  |

No significant differences in rates of missing values across study arms in program, hospital or patient characteristics. Differences in patient outcome Ns are not due to missing data, but differences in the denominator (some outcomes such as pneumonia, sepsis patients based on conditions present upon admission). All patient outcomes are required by ACS NSQIP in order to complete case abstraction, so there are no missing data.

TABLE S33B. Number of Valid Observations for Imputed Patient Characteristics

| IMPUTED VARIABLES                  | NON-MISSING N | MISSING N | PERCENT<br>MISSING |
|------------------------------------|---------------|-----------|--------------------|
| Surgical Specialty                 | 138,691       | 0         | 0%                 |
| Age                                | 138,691       | 0         | 0%                 |
| Sex                                | 138,691       | 0         | 0%                 |
| Body mass index (BMI)              | 136,389       | 2,302     | 1.7%               |
| Diabetes                           | 138,691       | 0         | 0%                 |
| Dyspnea                            | 138,691       | 0         | 0%                 |
| Preoperative ventilator dependence | 138,691       | 0         | 0%                 |
| History of COPD                    | 138,691       | 0         | 0%                 |
| History of CHF                     | 138,691       | 0         | 0%                 |
| Ascites                            | 138,691       | 0         | 0%                 |
| Renal failure                      | 138,691       | 0         | 0%                 |
| Dialysis dependent                 | 138,691       | 0         | 0%                 |
| Disseminated cancer                | 138,691       | 0         | 0%                 |
| Preoperative wound infection       | 138,691       | 0         | 0%                 |
| Steroid use                        | 138,691       | 0         | 0%                 |
| Weight loss                        | 138,691       | 0         | 0%                 |
| Bleeding disorder                  | 138,691       | 0         | 0%                 |
| Preoperative functional status     | 138,317       | 374       | 0.3%               |
| Emergency surgery                  | 138,691       | 0         | 0%                 |
| Smoking                            | 138,691       | 0         | 0%                 |
| Wound class                        | 138,691       | 0         | 0%                 |
| ASA Class                          | 138,552       | 139       | 0.1%               |
| Preoperative sepsis                | 138,691       | 0         | 0%                 |
| Hypertension requiring medication  | 138,691       | 0         | 0%                 |
| Preoperative transfusion           | 138,691       | 0         | 0%                 |
| Elective surgery                   | 138,608       | 83        | 0.1%               |
| Serum sodium                       | 115,530       | 23,161    | 16.7%              |
| BUN                                | 113,865       | 24,826    | 17.9%              |
| Creatinine                         | 116,223       | 22,468    | 16.2%              |
| Albumin                            | 86,682        | 52,009    | 37.5%              |
| Bilirubin                          | 87,375        | 51,316    | 37.0%              |
| SGOT                               | 87,791        | 50,900    | 36.7%              |
| Alkaline phosphatase               | 87,653        | 51,038    | 36.8%              |
| WBC                                | 115,946       | 22,745    | 16.4%              |
| Hematocrit                         | 117,610       | 21,081    | 15.2%              |
| Platelets                          | 116,223       | 22,468    | 16.2%              |
| PTT                                | 38,001        | 100,690   | 72.6%              |
| Operative time                     | 138,649       | 42        | 0.0%               |

Note: ACS NSQIP requires most variables to be completed in order to finalize case abstraction and transmit the case from the hospital to ACS NSQIP, except laboratory values. Thus, missing data are infrequent. If missing, ACS NSQIP imputes the 38 variables above using Buck's method.

#### J. COMPARISON OF POPULATION AVERAGED AND CONDITIONAL ESTIMATES FOR PATIENT AND RESIDENT OUTCOMES

TABLE S34. Intent-to-Treat (ITT) Estimates of the Association between Study Arm Assignment and Patient Outcomes: Population-Averaged Estimates and Conditional Estimates

|                                              | Non-        | n- ODDS RATIO (92% CONFIDENCE INTERVAL) P-VALUE |                       |                     |                         |  |  |
|----------------------------------------------|-------------|-------------------------------------------------|-----------------------|---------------------|-------------------------|--|--|
|                                              | Inferiority | UNADJUSTE                                       | D ANALYSES            | ADJUSTED            | ANALYSES                |  |  |
| DATIENT OUTCOME                              | Threshold   | MODEL 1                                         | MODEL 2               | MODEL 3             | MODEL 4                 |  |  |
| PATIENT OUTCOME                              | (Δ)         | Logistic Regression                             | Hierarchical Logistic | Logistic Regression | Hierarchical Logistic   |  |  |
|                                              |             | POPULATION                                      | Regression            | POPULATION          | Regression              |  |  |
|                                              |             | AVERAGED                                        | FSTIMATE              | AVERAGED            | CONDITIONAL<br>FSTIMATE |  |  |
| 30-Day Postoperative Death/Serious Morbidity | 1.15        | 0.96 (0.88-1.06)                                | 0.96 (0.87-1.06)      | 0.98 (0.90-1.05)    | 0.96 (0.90-1.04)        |  |  |
| **Primary Outcome                            |             | 0.489 <sup>′</sup>                              | 0.443                 | 0.571 ′             | 0.378                   |  |  |
| 30-Day Postoperative Death                   | 1.14        | 0.97 (0.85-1.10)                                | 1.00 (0.86-1.16)      | 0.94 (0.82-1.07)    | 0.95 (0.82-1.10)        |  |  |
|                                              |             | 0.661                                           | 0.993                 | 0.393               | 0.558                   |  |  |
| 30-Day Postoperative Serious Morbidity       | 1.15        | 0.97 (0.88-1.06)                                | 0.96 (0.86-1.06)      | 0.97 (0.90-1.05)    | 0.96 (0.90-1.04)        |  |  |
|                                              |             | 0.516                                           | 0.449                 | 0.566               | 0.399                   |  |  |
| 30-Day Postoperative Morbidity               | 1.16        | 0.97 (0.88-1.08)                                | 0.94 (0.84-1.06)      | 0.98 (0.91-1.06)    | 0.96 (0.89-1.04)        |  |  |
|                                              |             | 0.617                                           | 0.392                 | 0.640               | 0.388                   |  |  |
| 30-Day Postoperative Failure to Rescue       | 1.15        | 1.01 (0.86-1.18)                                | 1.03 (0.87-1.23)      | 0.98 (0.84-1.14)    | 1.00 (0.86-1.18)        |  |  |
|                                              |             | 0.940                                           | 0.730                 | 0.818               | 0.966                   |  |  |
| 30-Day Postoperative Pneumonia               | 1.14        | 1.01 (0.84-1.22)                                | 0.95 (0.78-1.14)      | 0.96 (0.89-1.04)    | 0.96 (0.81-1.14)        |  |  |
|                                              |             | 0.933                                           | 0.603                 | 0.401               | 0.669                   |  |  |
| 30-Day Postoperative Renal Failure           | 1.14        | 1.04 (0.87-1.24)                                | 1.05 (0.86-1.28)      | 1.05 (0.90-1.23)    | 1.07 (0.91-1.27)        |  |  |
|                                              |             | 0.703                                           | 0.659                 | 0.565               | 0.466                   |  |  |
| 30-Day Postoperative Unplanned Reoperation   | 1.14        | 0.90 (0.81-1.01)                                | 0.91 (0.81-1.03)      | 0.93 (0.84-1.03)    | 0.93 (0.84-1.04)        |  |  |
|                                              |             | 0.105                                           | 0.173                 | 0.227               | 0.249                   |  |  |
| 30-Day Postoperative Sepsis                  | 1.14        | 0.90 (0.74-1.10)                                | 0.90 (0.73-1.10)      | 0.90 (0.78-1.04)    | 0.89 (0.76-1.03)        |  |  |
|                                              |             | 0.370                                           | 0.363                 | 0.199               | 0.166                   |  |  |
| 30-Day Postoperative SSI                     | 1.15        | 0.99 (0.87-1.13)                                | 0.93 (0.81-1.08)      | 0.99 (0.90-1.09)    | 0.94 (0.86-1.04)        |  |  |
|                                              |             | 0.911                                           | 0.396                 | 0.822               | 0.317                   |  |  |
| 30-Day Postoperative UTI                     | 1.14        | 0.94 (0.79-1.11)                                | 0.91 (0.76-1.08)      | 0.94 (0.79-1.11)    | 0.90 (0.76-1.06)        |  |  |
|                                              |             | 0.496                                           | 0.324                 | 0.520               | 0.254                   |  |  |

N patients varies across outcomes. N residency programs = 115 programs. Unadjusted models (Models 1&2) regress outcomes on study arm assignment. Adjusted models (Models 3&4) regress outcomes on study arm assignment and patient characteristics (see Section G for list of covariates). All models adjusted for program-level rates of 2013 30-day postoperative death/serious morbidity (stratifying variable used in randomization). Models 1&3 are population-averaged models estimated using logistic regression with program-level clustered standard errors. Models 2&4 are conditional estimates obtained from 3-level hierarchical logistic regression models that included program-level random intercepts.

TABLE S35. Intent-to-Treat (ITT) Estimates of the Association between Study Arm Assignment and Resident Outcomes: Population-Averaged Estimates and Conditional Estimates

| ODDS RATIO (95% CONFIDENCE INTERVAL) P-VALUE |                     |                       |                     |                       |  |  |  |
|----------------------------------------------|---------------------|-----------------------|---------------------|-----------------------|--|--|--|
|                                              | UNADJUSTE           | D ANALYSES            | ADJUSTED            | ANALYSES              |  |  |  |
| RESIDENT OUTCOME                             | MODEL 1             | MODEL 2               | MODEL 3             | MODEL 4               |  |  |  |
|                                              | Logistic Regression | Hierarchical Logistic | Logistic Regression | Hierarchical Logistic |  |  |  |
|                                              | POPULATION AVERAGED | Regression            | POPULATION AVERAGED | Regression            |  |  |  |
| PRIMARY OUTCOMES                             | ESTIMATE            | CONDITIONAL ESTIMATE  | ESTIMATE            | CONDITIONAL ESTIMATE  |  |  |  |
| (Verv) dissatisfied with education quality   | 1.06 (0.76-1.48)    | 1.08 (0.77-1.52)      | 0.96 (0.69-1.33)    | 1.00 (0.72-1.41)      |  |  |  |
|                                              | 0.722               | 0.640                 | 0.819               | 0.988                 |  |  |  |
| (Verv) dissatisfied with personal wellbeing  | 1.28 (0.96-1.71)    | 1.31 (0.99-1.74)      | 1.14 (0.89-1.46)    | 1.20 (0.91-1.59)      |  |  |  |
|                                              | 0.093               | 0.062                 | 0.297               | 0.199 <sup>′</sup>    |  |  |  |
| SECONDARY OUTCOMES                           |                     |                       |                     |                       |  |  |  |
| Perceived negative effect of duty hours on:  | 0.40 (0.32-0.50)    | 0.40 (0.32-0.51)      | 0.39 (0.31-0.49)    | 0.39 (0.31-0.50)      |  |  |  |
| patient safety                               | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.18 (0.14-0.24)    | 0.16 (0.12-0.21)      | 0.17 (0.13-0.21)    | 0.15 (0.11-0.20)      |  |  |  |
| continuity of care                           | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.47 (0.37-0.61)    | 0.47 (0.36-0.62)      | 0.45 (90.35-0.58)   | 0.43 (0.33-0.58)      |  |  |  |
| conference attendance                        | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.26 (0.21-0.33)    | 0.24 (0.19-0.31)      | 0.24 (0.19-0.29)    | 0.22 (0.18-0.28)      |  |  |  |
| clinical skills acquisition                  | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.24 (0.19-0.30)    | 0.22 (0.17-0.27)      | 0.22 (0.18-0.28)    | 0.21 (0.16-0.26)      |  |  |  |
| operative skills acquisition                 | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.28 (0.21-0.36)    | 0.26 (0.20-0.34)      | 0.25 (0.19-0.32)    | 0.24 (0.18-0.31)      |  |  |  |
| resident autonomy                            | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |
| Perceived negative effect of duty hours on:  | 0.24 (0.18-0.30)    | 0.22 (0.17-0.28)      | 0.22 (0.18-0.28)    | 0.21 (0.16-0.26)      |  |  |  |
| operative volume                             | <0.001              | <0.001                | <0.001              | <0.001                |  |  |  |

TABLE S35 (continued). Intent-to-Treat (ITT) Estimates of the Association between Study Arm Assignment and Resident Outcomes: Population-Averaged Estimates and Conditional Estimates

|                                                | 0                   | DDS RATIO (95% CONFID | ENCE INTERVAL) P-VAL | JE                    |
|------------------------------------------------|---------------------|-----------------------|----------------------|-----------------------|
|                                                | UNADJUSTE           | ED ANALYSES           | ADJUSTED             | ANALYSES              |
| RESIDENT OUTCOME                               | MODEL 1             | MODEL 2               | MODEL 3              | MODEL 4               |
|                                                | Logistic Regression | Hierarchical Logistic | Logistic Regression  | Hierarchical Logistic |
|                                                | POPULATION AVERAGED | Regression            | POPULATION AVERAGED  | Regression            |
|                                                | ESTIMATE            | CONDITIONAL ESTIMATE  | ESTIMATE             | CONDITIONAL ESTIMATE  |
| SECONDARY OUTCOMES (continued)                 |                     |                       |                      |                       |
| Perceived negative effect of duty hours on:    | 0.32 (0.26-0.41)    | 0.30 (0.24-0.39)      | 0.30 (0.24-0.39)     | 0.29 (0.23-0.37)      |
| availability for elective cases                | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 0.21 (0.17-0.27)    | 0.20 (0.16-0.25)      | 0.21 (0.16-0.26)     | 0.19 (0.15-0.25)      |
| availability for urgent cases                  | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 0.45 (0.36-0.56)    | 0.45 (0.37-0.56)      | 0.41 (0.33-0.49)     | 0.41 (0.33-0.50)      |
| time for teaching medical students             | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 0.36 (0.28-0.46)    | 0.38 (0.29-0.49)      | 0.34 (0.27-0.44)     | 0.36 (0.27-0.47)      |
| relationship between interns/residents         | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 0.63 (0.48-0.83)    | 0.65 (0.49-0.87)      | 0.60 (0.44-0.81)     | 0.61 (0.45-0.84)      |
| professionalism                                | 0.001               | 0.003                 | 0.001                | 0.002                 |
| Perceived negative effect of duty hours on:    | 1.05 (0.83-1.33)    | 1.09 (0.85-1.40)      | 1.00 (0.79-1.27)     | 1.05 (0.81-1.36)      |
| morale                                         | 0.686               | 0.513                 | 0.993                | 0.727                 |
| Perceived negative effect of duty hours on:    | 3.13 (2.41-4.06)    | 3.37 (2.54-4.47)      | 3.36 (2.55-4.43)     | 3.60 (2.68-4.84)      |
| ability to prepare for cases                   | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 2.66 (2.06-3.44)    | 2.81 (2.12-3.73)      | 2.70 (2.09-3.50)     | 2.87 (2.14-3.85)      |
| ability to participate in research             | <0.001              | <0.001                | <0.001               | <0.001                |
| Perceived negative effect of duty hours on:    | 0.91 (0.71-1.16)    | 0.94 (0.73-1.23)      | 0.95 (0.74-1.21)     | 0.98 (0.75-1.29)      |
| job satisfaction                               | 0.448               | 0.666                 | 0.675                | 0.898                 |
| Perceived negative effect of duty hours on:    | 1.02 (0.79-1.30)    | 1.03 (0.79-1.33)      | 1.00 (0.77-1.30)     | 1.01 (0.77-1.32)      |
| satisfaction with decision to become a surgeon | 0.905               | 0.843                 | 0.989                | 0.955                 |

TABLE S35 (continued). Intent-to-Treat (ITT) Estimates of the Association between Study Arm Assignment and Resident Outcomes: Population-Averaged Estimates and Conditional Estimates

|                                               | 0                   | ODDS RATIO (95% CONFIDENCE INTERVAL) P-VALUE |                     |                       |  |  |  |  |  |
|-----------------------------------------------|---------------------|----------------------------------------------|---------------------|-----------------------|--|--|--|--|--|
|                                               | UNADJUSTE           | D ANALYSES                                   | ADJUSTED            | ANALYSES              |  |  |  |  |  |
| RESIDENT OUTCOME                              | MODEL 1             | MODEL 2                                      | MODEL 3             | MODEL 4               |  |  |  |  |  |
|                                               | Logistic Regression | Hierarchical Logistic                        | Logistic Regression | Hierarchical Logistic |  |  |  |  |  |
|                                               | POPULATION AVERAGED | Regression                                   | POPULATION AVERAGED | Regression            |  |  |  |  |  |
| SECONDARY OUTCOMES (continued)                | ESTIMATE            | CONDITIONAL ESTIMATE                         | ESTIMATE            | CONDITIONAL ESTIMATE  |  |  |  |  |  |
| Derectived percettive offect of duty hours on | 2 20 (2 56 4 40)    | 2 66 (2 70 4 07)                             | 2 46 (2 60 4 62)    | 2 70 (2 75 5 22)      |  |  |  |  |  |
| time with family and friends                  | 3.39 (2.30-4.49)    | 3.00 (2.70-4.97)                             | 3.40 (2.00-4.02)    | 3.79 (2.75-5.23)      |  |  |  |  |  |
| time with family and friends                  |                     |                                              |                     |                       |  |  |  |  |  |
| Perceived negative effect of duty hours on:   | 3.48 (2.65-4.59)    | 3.81 (2.84-5.11)                             | 3.53 (2.68-4.66)    | 3.87 (2.85-5.25)      |  |  |  |  |  |
| time for hobbies/extracurricular activities   | <0.001              | <0.001                                       | <0.001              | <0.001                |  |  |  |  |  |
| Perceived negative effect of duty hours on:   | 3.07 (2.30-4.09)    | 3.22 (2.37-4.36)                             | 3.00 (2.26-3.97)    | 3.20 (2.33-4.38)      |  |  |  |  |  |
| own health                                    | <0.001              | <0.001                                       | <0.001              | <0.001                |  |  |  |  |  |
| Perceived negative effect of duty hours on:   | 3.49 (2.71-4.50)    | 3.85 (2.88-5.15)                             | 3.62 (2.80-4.70)    | 4.04 (2.99-5.47)      |  |  |  |  |  |
| rest                                          | <0.001              | <0.001                                       | <0.001              | <0.001                |  |  |  |  |  |
| Perceived negative effect of duty hours on:   | 2.12 (1.59-2.83)    | 2.26 (1.64-3.11)                             | 2.07 (1.56-2.76)    | 2.23 (1.61-3.08)      |  |  |  |  |  |
| wellbeing                                     | <0.001              | <0.001                                       | <0.001              | <0.001                |  |  |  |  |  |
| (Very) dissatisfied: continuity of care       | 0.44 (0.32-0.60)    | 0.44 (0.32-0.60)                             | 0.42 (0.31-0.57)    | 0.41 (0.29-0.58)      |  |  |  |  |  |
|                                               | <0.001              | <0.001                                       | <0.001              | <0.001                |  |  |  |  |  |
| (Very) dissatisfied: patient safety           | 0.85 (0.56-1.29)    | 0.85 (0.55-1.31)                             | 0.74 (0.49-1.12)    | 0.74 (0.47-1.16)      |  |  |  |  |  |
|                                               | 0.442               | 0.458                                        | 0.156               | 0.192                 |  |  |  |  |  |
| (Very) dissatisfied: work hours/scheduling    | 0.96 (0.72-1.28)    | 0.95 (0.71-1.27)                             | 0.88 (0.67-1.16)    | 0.89 (0.66-1.20)      |  |  |  |  |  |
|                                               | 0.772               | 0.725                                        | 0.361               | 0.453                 |  |  |  |  |  |
| (Very) dissatisfied: quality/ease of          | 0.68 (0.52-0.90)    | 0.70 (0.52-0.92)                             | 0.64 (0.49-0.83)    | 0.64 (0.48-0.85)      |  |  |  |  |  |
| handoffs/care transitions                     | 0.008               | 0.011                                        | 0.001               | 0.002                 |  |  |  |  |  |
| (Very) dissatisfied: time for rest            | 1.32 (1.00-1.76)    | 1.41 (1.06-1.89)                             | 1.20 (0.94-1.54)    | 1.32 (0.98-1.76)      |  |  |  |  |  |
|                                               | 0.052               | 0.020                                        | 0.146               | 0.066                 |  |  |  |  |  |

TABLE S35 (continued). Intent-to-Treat (ITT) Estimates of the Association between Study Arm Assignment and Resident Outcomes: Population-Averaged Estimates and Conditional Estimates

|                                                | ODDS RATIO (95% CONFIDENCE INTERVAL) P-VALUE |                       |                     |                       |
|------------------------------------------------|----------------------------------------------|-----------------------|---------------------|-----------------------|
|                                                | UNADJUSTED ANALYSES                          |                       | ADJUSTED ANALYSES   |                       |
| RESIDENT OUTCOME                               | MODEL 1                                      | MODEL 2               | MODEL 3             | MODEL 4               |
|                                                | Logistic Regression                          | Hierarchical Logistic | Logistic Regression | Hierarchical Logistic |
|                                                | ESTIMATE                                     | CONDITIONAL ESTIMATE  | ESTIMATE            | CONDITIONAL ESTIMATE  |
| SECONDARY OUTCOMES (continued)                 |                                              |                       |                     |                       |
| (Very) dissatisfied: work hour regulations     | 0.95 (0.68-1.32)                             | 0.99 (0.71-1.40)      | 0.94 (0.68-1.29)    | 0.98 (0.68-1.41)      |
|                                                | 0.748                                        | 0.972                 | 0.692               | 0.912                 |
| Always/often: fatigue affects personal safety  | 1.14 (0.90-1.44)                             | 1.15 (0.91-1.47)      | 1.15 (0.91-1.46)    | 1.17 (0.92-1.48)      |
|                                                | 0.270                                        | 0.247                 | 0.228               | 0.212                 |
| Always often: fatigue affects patient safety   | 1.18 (0.91-1.53)                             | 1.18 (0.91-1.53)      | 1.20 (0.93-1.54)    | 1.20 (0.92-1.55)      |
|                                                | 0.207                                        | 0.208                 | 0.164               | 0.173                 |
| At least once in recent typical month: handed  | 0.54 (0.46-0.64)                             | 0.53 (0.45-0.63)      | 0.53 (0.44-0.63)    | 0.51 (0.43-0.62)      |
| off active patient care issue due to duty hour | <0.001                                       | < 0.001               | <0.001              | <0.001                |
| limits                                         |                                              |                       |                     |                       |
| At least once in recent typical month: left    | 0.49 (0.35-0.68)                             | 0.46 (0.32-0.65)      | 0.51 (0.35-0.74)    | 0.47 (0.32-0.68)      |
| during an operation due to duty hour limits    | <0.001                                       | <0.001                | <0.001              | <0.001                |
| At least once in recent typical month: missed  | 0.58 (0.47-0.71)                             | 0.56 (0.45-0.69)      | 0.56 (0.45-0.69)    | 0.53 (0.42-0.67)      |
| an operation due to duty hour limits           | <0.001                                       | <0.001                | <0.001              | <0.001                |
## K. INSTITUTIONAL REVIEW BOARD OFFICE DETERMINATION

#### Institutional Review Board Office Northwestern University

Biomedical IRB 750 North Lake Shore Drive Suite 700 Chicago, Illinois 60611 312-503-9338

Social and Behavioral Sciences IRB 600 Foster Street Chambers Hall, Second Floor Evanston, Illinois 60208 847-467-1723



#### Form for Determining Whether a Project Involves Human Subjects Research Version: 3.0 Date: 5/10/2013

The Northwestern University IRB is required to review and approve all research involving human subjects. This application is intended to help you determine if your project requires IRB approval. If you require written documentation from the IRB Office, complete the entire form, and email the signed form and any relevant supporting documents (i.e., grant, protocol, consent forms) to irb@northwestern.edu. You should receive an IRB response within 10 business days.

## **Current Status of the Project**

Has the project already been conducted (i.e., data has already been collected and analyzed)?

| SECTION I: Activities Determined by the NU IRB Office Not to Represent Human Subjects Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A. Case Report: The project consists of a case report or series which describes an interesting treatment, presentation or outcome. A critical component is that nothing was done to the patient(s) with prior "research" intent.                                                                                                                                                                                                                                                                                                                                                     |     |
| <b>NOTE:</b> For case reports, HIPAA requires that the disclosure of an individual's protected health information must be authorized by that individual. If a case report contains any of the 18 protected health information identifiers as defined by the HIPAA regulations, a signed authorization (using the authorization form from the entity that holds the record) to disclose this information must be obtained from the individual(s) whose information is being disclosed.                                                                                                |     |
| <ul> <li>B. Course-Related Activities: The project is limited to course-related activities designed specifically for educational or teaching purposes where data are collected from and about students as part of a routine class exercise or assignment and is not intended for use outside of the classroom.</li> <li>NOTE: IRB approval is required if a student is involved in an activity designed to teach research methodologies and the instructor or student wishes to conduct further investigation and analyses in order to contribute to scholarly knowledge.</li> </ul> | 000 |
| C. Decedents: The project involves research that is limited to death records, autopsy materials, or cadaver specimens. If the project involves the use and/or collection of Protected Health Information (PHI), HIPAA regulations apply to decedent research. As the Privacy Board, the IRB Office requires that you confirm the following conditions as set forth in the Privacy Rule at 45 CFF 164.512(i)(ii)(iii), have been met.                                                                                                                                                 | 1   |

Page 1 of 9

| <ul> <li>i. the use will be solely for research on the inform</li> <li>the Principal Investigator has documentation or whom information is being sought, and</li> <li>iii. the information sought is for the purposes of the Note, however, that this exception may not be availab contains Psychotherapy Notes or Information relating the drug or alcohol abuse</li> </ul>                                                                                           | nation of a decedent; and<br>f the death of the individual about<br>ne research<br>le for decedent Information that<br>ro HIV, mental health, genetic testing, or                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D. Journalism/Documentary Activities: The activities are<br>interviews that focus on specific events, views, etc., and th<br>(including electronic), documentary production, or are part<br>journalism. There is no intent to test a hypothesis.                                                                                                                                                                                                                       | e limited to investigations and<br>at lead to publication in any medium<br>t of training that is explicitly linked to                                                                                                                                           |
| <b>NOTE:</b> IRB approval may be required when journalists conscientific research intended to produce generalizable know surveys, and/or interviews that are intended to test theorie                                                                                                                                                                                                                                                                                  | duct activities normally considered<br>vledge (e.g., systematic research,<br>es or develop models).                                                                                                                                                             |
| <ul> <li>Dral History: The project is limited to oral history active that only document a specific historical event or the experient of draw conclusions or generalize findings.</li> <li>NOTE: IRB approval is required when the oral history active generalizable conclusions (e.g., that serve as data collection sociological, or anthropological models/theories).</li> </ul>                                                                                     | vities, such as open ended interviews,<br>iences of individuals without the intent<br>ities are intended to produce<br>n intended to test economic,                                                                                                             |
| F. Program evaluation /Quality Improvement/Quality As<br>limited to program evaluation, quality improvement or qua<br>specifically to assess or improve performance within the do<br>setting. The intention of the project is <u>not</u> to generate con<br>outside of the immediate environment where the project or<br><b>Note:</b> Investigators who plan to conduct a QI/QA project, s<br>approval from any applicable committees within their depa<br>will occur. | ssurance Activities: The project is<br>ality assurance activities designed<br>epartment, hospital or classroom<br>iclusions that can be applied universally,<br>occurred.<br>should ensure that they have received<br>artment or the site in which the activity |
| <ul> <li>G. Public Use Datasets: The project is limited to analyzing publicly available dataset. Below are examples of data sour research (unless the researcher has received the restricted</li> <li>Data files downloaded from the ICPSR (Interuniversity O Research): <u>http://www.icpsr.umich.edu/icpsrweb/ICPS</u> Opinion Research <u>http://www.ropercenter.uconn.edu</u></li> </ul>                                                                           | g de-identified data contained within a<br>rces that qualify as not-human subjects<br>use data):<br>Consortium for Political and Social<br><u>R/</u> or the Roper Center for Public                                                                             |

Page 2 of 9

| Bureau of Economic Analysis: <u>http://www.bea.gov/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bureau of Labor Statistics (BLS): <u>http://www.bls.gov/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Center for Disease Control (CDC): <u>http://www.cdc.gov/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Consumer expenditure Survey: <u>http://www.bls.gov/cex/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Current Population Survey: <u>http://www.bls.gov/cps/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FBI Uniform Crime Reporting Program: <a href="http://www.fbi.gov/about-us/cjis/ucr/ucr">http://www.fbi.gov/about-us/cjis/ucr/ucr</a> or National Archive of Criminal justice data: <a href="http://www.icpsr.umich.edu/icpsrweb/NACJD/index.jsp">http://www.fbi.gov/about-us/cjis/ucr/ucr</a> or National Archive of Criminal justice data: <a href="http://www.icpsr.umich.edu/icpsrweb/NACJD/index.jsp">http://www.fbi.gov/about-us/cjis/ucr/ucr</a> or National Archive of Criminal justice data: <a href="http://www.icpsr.umich.edu/icpsrweb/NACJD/index.jsp">http://www.icpsr.umich.edu/icpsrweb/NACJD/index.jsp</a> |
| General Social Survey: <u>http://www3.norc.org/GSS+Website/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| National Center for Education Statistics (NCES): <u>http://nces.ed.gov/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| National Longitudinal Surveys (NLS): <u>http://www.bls.gov/nls/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Survey of Income and Program Participation: <a href="http://www.census.gov/sipp/">http://www.census.gov/sipp/</a>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Government sites that bring data files together: <u>Data.gov</u> (http://www.data.gov/); <u>FedStats</u> (http://www.fedstats.gov/); and <u>USA.gov</u> (http://www.usa.gov/Topics/Reference_Shelf/Data.shtml)                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>NOTE:</b> IRB review <u>is</u> required if the publicly available data set contains identifiers, or if the merging of multiple data sets might result in identification of the subjects. In both cases, Exempt Category #4                                                                                                                                                                                                                                                                                                                                                                                              |
| may apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>may apply.</li> <li>H. Coded* Private Information and/or Human Biological Specimens: The project is limited to the use of existing and/or prospectively collected coded private information and/or human biological specimens (hereafter referred to as "specimens"). IRB Approval is not required if all of the following conditions apply to the project:</li> </ul>                                                                                                                                                                                                                                            |
| <ul> <li>may apply.</li> <li>H. X Coded* Private Information and/or Human Biological Specimens: The project is limited to the use of existing and/or prospectively collected coded private information and/or human biological specimens (hereafter referred to as "specimens"). IRB Approval is not required if all of the following conditions apply to the project: <ul> <li>i. X (1) The private information or specimens were/are not collected specifically for the currently proposed research project through an interaction or intervention with living individuals; and</li> </ul> </li> </ul>                   |

Page 3 of 9

|                                                                                                                        | (c) there are other legal requirements prohibiting the release of the key to the<br>investigators, until the individuals are deceased, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ii. [><br>cc<br>b                                                                                                      | Specimens are <u>not</u> being used to test the effectiveness of a medical device or as a portrol in an investigation of an investigational device and the results of the activity are to e submitted to the FDA or held for inspection by the FDA, <b>and</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iii. [><br>in<br>ex<br>pi                                                                                              | The records/images/charts that are being collected for this study are <u>not</u> from<br>dividuals who are or will become recipients of an FDA regulated product (approved or<br>xperimental) or act as a control as directed by a research protocol and not by medical<br>ractice, and the results are to be submitted to the FDA or held for inspection by the FDA.                                                                                                                                                                                                                                                                                                                                                                                         |
| From the Off<br>*Coded mear<br>investigator t<br>been replace<br>exists, enabli                                        | ice for Human Research Protections (OHRP) guidance document dated October 16, 2008:<br>Ins that: (1) identifying information (such as name or social security number) that would enable the<br>Ite or readily ascertain the identity of the individual to whom the private information or specimens pertain has<br>I with a number, letter, symbol, or combination thereof (i.e., the code); and (2) a key to decipher the code<br>Ing linkage of the identifying information to the private information or specimens.                                                                                                                                                                                                                                        |
| **Investigata<br>information of<br>research. If th<br>conduct of th<br>such addition<br>include, but a<br>or specimens | or includes anyone involved in conducting the research. The act of solely providing coded private<br>or specimens (for example, by a tissue repository) does not constitute involvement in the conduct of the<br>ne individuals who provide coded information or specimens collaborate on other activities related to the<br>is research with the investigators who receive such information or specimens, then the IRB would consider<br>and activities to constitute involvement in the conduct of the research. Examples of such additional activities<br>are not limited to: (1) the study, interpretation, or analysis of the data resulting from the coded information<br>; and (2) authorship of presentations or manuscripts related to the research. |
| I. De-Ic<br>the use o<br>biologica<br>can confi                                                                        | dentified Private Information or Human Biological Specimens: The project is limited to<br>of existing and/or prospectively collected de-identified private information and/or human<br>I specimens (hereafter referred to as "specimens"). IRB Approval is not required if you<br>rm the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| i. [<br>cu<br>in                                                                                                       | The private information or specimens were/are not collected specifically for the<br>urrently proposed research project through an interaction or intervention with living<br>dividuals; and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ii. [<br>ni<br>co                                                                                                      | The investigator can confirm that the use of the private information or specimens is ot in violation of the terms of use under which the information or specimens were/will be ollected; <b>and</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| iii. [<br>id<br>18<br>cc<br>N                                                                                          | The investigator will only receive information or specimens that are fully de-<br>lentified. De-identified means that the materials to be studied are devoid of any of the<br>8 Protected Health Information elements set forth in the Privacy Rule, as well as any<br>odes that would enable linkage of the information or specimens to individual identifiers.<br>ote: To be considered de-identified, nobody, including individuals who are not involved<br>the conduct of the project, should be able to link the information or specimens back to                                                                                                                                                                                                        |
| 1000                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Page 4 of 9

|                      | idor                                                                                                                                                                                 | tifiers and                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | ider                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |
|                      | iv. 🗌<br>con<br>be s                                                                                                                                                                 | Specimens are <u>not</u> being us<br>trol in an investigation of an<br>ubmitted to the FDA or held                                                                                                                       | ed to test the effectiveness of a medical device or as a<br>investigational device and the results of the activity are to<br>for inspection by the FDA, <b>and</b>                                                                                          |
|                      | v.<br>indi<br>exp<br>prac                                                                                                                                                            | The records/images/charts<br>viduals who are or will beco<br>erimental) or act as a contro<br>tice, and the results are to l                                                                                             | that are being collected for this study are <u>not</u> from<br>me recipients of an FDA regulated product (approved or<br>ol as directed by a research protocol and not by medical<br>be submitted to the FDA or held for inspection by the FDA.             |
|                      |                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |
| Inst<br>II ar<br>Dep | tructions: I<br>nd III to asso<br>partment of                                                                                                                                        | your activity did not fall int<br>ess if you are engaged in hu<br>Health and Human Services                                                                                                                              | o the categories described in Section I, continue to Section<br>man subjects research per the regulations set forth by the<br>(HHS) and the Food and Drug Administration (FDA).                                                                             |
| 3                    |                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                             |
| SEC                  | TION II. Ac                                                                                                                                                                          | tivities subject to HHS hum                                                                                                                                                                                              | an subject research regulations (45 CFR 46)                                                                                                                                                                                                                 |
| 1.                   | ls the activ<br>knowledge                                                                                                                                                            | vity RESEARCH: a systemat<br>e?                                                                                                                                                                                          | ic investigation designed to contribute to generalizable                                                                                                                                                                                                    |
|                      | TIP: If the<br>the investi<br>immediate<br>departme                                                                                                                                  | investigation characterized<br>gation is to generate conclu<br>e environment where the inv<br>nt), then the activity meets t                                                                                             | by order, planning, and methodology and the intention of<br>sions that can be applied universally, outside of the<br>vestigation occurred (i.e., the classroom, hospital,<br>the definition of research.                                                    |
|                      |                                                                                                                                                                                      | #2                                                                                                                                                                                                                       | —                                                                                                                                                                                                                                                           |
|                      | 🗌 Yes, G                                                                                                                                                                             | 0 to #2                                                                                                                                                                                                                  | No, Go to FDA section III                                                                                                                                                                                                                                   |
| 2.                   | <b>Does the r</b>                                                                                                                                                                    | o to #2<br>esearch involve obtaining i                                                                                                                                                                                   | No, Go to FDA section III                                                                                                                                                                                                                                   |
| 2.                   | Yes, G Does the r Yes, G                                                                                                                                                             | esearch involve obtaining i<br>o to #3                                                                                                                                                                                   | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III                                                                                                                                                                   |
| 2.                   | Does the r<br>Yes, G<br>Yes, G                                                                                                                                                       | esearch involve obtaining i<br>o to #3<br>esearch involve collecting c                                                                                                                                                   | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III lata through <u>intervention</u> (i.e., physical procedures or                                                                                                    |
| 2.                   | <ul> <li>Yes, G</li> <li>Does the r</li> <li>Yes, G</li> <li>Does the r</li> <li>manipulat</li> </ul>                                                                                | esearch involve obtaining i<br>o to #3<br>esearch involve collecting c<br>ion of the environment) or                                                                                                                     | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III lata through <u>intervention</u> (i.e., physical procedures or <u>interaction (</u> i.e., communication or interpersonal contact                                  |
| 2.                   | Does the r<br>Yes, G<br>Does the r<br>manipulat<br>between i                                                                                                                         | esearch involve obtaining i<br>o to #3<br>esearch involve collecting o<br>ion of the environment) or<br>nvestigator and person) wit                                                                                      | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III lata through <u>intervention</u> (i.e., physical procedures or <u>interaction (</u> i.e., communication or interpersonal contact th the individuals?              |
| 2.                   | Does the r<br>Yes, G<br>Does the r<br>manipulat<br>between i<br>Yes, IF                                                                                                              | esearch involve obtaining i<br>o to #3<br>esearch involve collecting o<br>ion of the environment) or<br>nvestigator and person) with<br>B review required.                                                               | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III  data through <u>intervention</u> (i.e., physical procedures or <u>interaction</u> (i.e., communication or interpersonal contact th the individuals? No, Go to #4 |
| 2.                   | <ul> <li>Yes, G</li> <li>Does the r</li> <li>Yes, G</li> <li>Does the r</li> <li>manipulat</li> <li>between i</li> <li>Yes, IF</li> <li>Go to FDA</li> </ul>                         | esearch involve obtaining i<br>o to #3<br>esearch involve collecting o<br>ion of the environment) or<br>nvestigator and person) with<br>B review required.<br>section III to assess if                                   | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III  lata through <u>intervention</u> (i.e., physical procedures or <u>interaction</u> (i.e., communication or interpersonal contact th the individuals? No, Go to #4 |
| 2.                   | <ul> <li>Yes, G</li> <li>Does the r</li> <li>Yes, G</li> <li>Does the r</li> <li>manipulat</li> <li>between i</li> <li>Yes, IF</li> <li>Go to FDA</li> <li>FDA regulat</li> </ul>    | research involve obtaining i<br>o to #3<br>research involve collecting of<br>ion of the environment) or<br>nvestigator and person) with<br>B review required.<br>section III to assess if<br>itions apply to your study. | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III  lata through <u>intervention</u> (i.e., physical procedures or <u>interaction</u> (i.e., communication or interpersonal contact th the individuals? No, Go to #4 |
| 2.                   | <ul> <li>Yes, G</li> <li>Does the r</li> <li>Yes, G</li> <li>Does the r</li> <li>manipulat</li> <li>between i</li> <li>Yes, IF</li> <li>Go to FDA</li> <li>FDA regulation</li> </ul> | research involve obtaining i<br>o to #3<br>research involve collecting of<br>ion of the environment) or<br>nvestigator and person) with<br>B review required.<br>section III to assess if<br>itions apply to your study. | No, Go to FDA section III  nformation about LIVING individuals? No, Go to FDA section III  lata through <u>intervention</u> (i.e., physical procedures or <u>interaction</u> (i.e., communication or interpersonal contact th the individuals? No, Go to #4 |

Page 5 of 9

| 4.         | Does the research involve collecting identifiable information (i.e., the identity of the subject is or may readily be ascertained by the investigator or associated with the information)?         Yes, Go to #5       No, Go to FDA section III                                                                |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.         | Is the information <u>private</u> ? (About behavior that occurs in a context in which an individual can<br>reasonably expect that no observation or recording is taking place, or provided for specific<br>purposes by an individual and which the individual can reasonably expect will not be made<br>public) |
|            | Yes, IRB review required No, Go to FDA section III<br>Go to FDA section III to assess if<br>FDA regulations apply to your study.                                                                                                                                                                                |
| SEC<br>the | CTION III. Activities subject to FDA human subject regulations: If your answer is "yes" to any of<br>3 questions below, IRB approval is required and the FDA regulations apply to your study.                                                                                                                   |
|            |                                                                                                                                                                                                                                                                                                                 |

1. Is this is an experiment that involves a test article \* and one or more human subjects, and the results of which are intended to be later submitted to, or held for inspection by, the FDA as part of an application for a research or marketing permit? A subject is an individual (either health or a patient) who is a recipient of the test article or a control.

\*Test article *Test article* means any drug (including a biological product for human use), medical device for human use, human food additive, color additive, electronic product, or any other article subject to regulation under the Food, Drug, and Cosmetic Act.

Yes , IRB review required No

2. Is this is a clinical investigation or research involving one or more human subjects to determine the safety or effectiveness of a device? A subject is an individual (healthy or has a medical condition or disease) <u>on whom</u> or <u>on whose specimen</u> an investigational device is used, or who participates as a control.

Yes, IRB review required No

3. Is this an experiment in which a drug is administered or dispensed to, or used involving, one or more human subjects? This excludes the use of a marketed drug in the course of medical practice. A human subject is an individual (healthy or patient with a disease) that participates either as a recipient of the investigational new drug or as a control.

Page 6 of 9

| Vac  | DD  | raviour | roquirad |
|------|-----|---------|----------|
| res, | IND | review  | required |

No

Instructions:

If IRB Review is required, you will need to submit NEW STUDY application eIRB.

SECTION IV: Complete this section if you have determined that your activities do not constitute human subjects research and you require written confirmation of this determination from the IRB Office. E-mail the signed form and any relevant supporting documents (i.e., grant, protocol, consent forms) to irb@northwestern.edu.

| Investigator Information                                                                      |                     |                            |  |  |
|-----------------------------------------------------------------------------------------------|---------------------|----------------------------|--|--|
| Name (Last, First)                                                                            | Degree(s)           | University Status/Title    |  |  |
| BILIMORIA, KARL Y.                                                                            | ASSISTANT PROFESSOR |                            |  |  |
| Department                                                                                    |                     | College                    |  |  |
| DEPARTMENT OF SURGERY                                                                         |                     | FEINBERG                   |  |  |
| Phone Number                                                                                  |                     | E-mail Address             |  |  |
| +1 (312) 695-4853                                                                             |                     | k-                         |  |  |
|                                                                                               |                     | bilimoria@northwestern.edu |  |  |
| Project Information                                                                           |                     |                            |  |  |
| Project Title                                                                                 |                     |                            |  |  |
| Modification of Surgical Resident Duty Hours Stud                                             | ly: A Cluster-Rando | mized Pragmatic Trial      |  |  |
| Name of Funding Source (i.e., Department, NIH, Fo                                             | undation)           |                            |  |  |
| Self-Funded                                                                                   |                     |                            |  |  |
| Grant Number (if applicable)                                                                  |                     |                            |  |  |
|                                                                                               |                     |                            |  |  |
| Project Description (describe the aims of the study and any activities involving interaction, |                     |                            |  |  |
| intervention with human subjects, and/or their information or specimens)                      |                     |                            |  |  |

Summary of Study Design Features That May Influence Whether Proposed Study Constitutes Human Subjects Research

- Aim is to evaluate the effect of a **policy change** (resident duty hour restriction policies) on patient outcomes and resident perceptions/wellbeing
- Units of randomization are organizations (residency programs), not individual persons
- Interventions are at the level of organizations (residency programs), and will involve a change of resident duty hour restrictions

Page 7 of 9

- The intervention will involve a change in selected ACGME resident duty hour restrictions. Half
  of the participating residency programs will be randomized to usual care (current duty hour
  restrictions). Half of the participating residency programs in this study will be randomized to the
  intervention arm (relaxed duty hour restrictions).
- Apart from an informational webinar to recruit residency programs, there will be no direct interaction between Study Team members and participating residency programs/organizations.
- There will be no direct contact/interaction/intervention between Study Team and human subjects
- This study has been sanctioned, supported and approved by the Accreditation for Graduate Medical Education, the American Board of Surgery, and the American College of Surgeons
- Data for evaluation will come from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP). These data are collected as part of an ongoing process through hospitals' prior and ongoing participation in ACS NSQIP (participation is independent of the proposed study). The Study Team will only have access to **coded private information** for the purposes statistical analyses. The coded dataset will not contain any direct patient identifiers or dates. These data will be made available in a coded, private dataset to the Study Team by the ACS NSQIP.
- Additional data for evaluation will come from a module to be added to the American Board of Surgery In-Training Examination (ABSITE). The ABSITE is a compulsory examination administered annually to all residents in the month of January. The ABS will include a special module in the January 2015 ABSITE that asks residents questions regarding their perception of the effectiveness of training, as well as their satisfaction with training. The Study Team will only have access to coded private information for the purposes of statistical analyses. The data will be collected by the ABS, and then made available to the Study Team in the form of a coded, private dataset that does not include any direct individual-level identifiers.

k-13C

Signature of Investigator:

Date: \_\_11/19/2013\_\_\_\_

Page 8 of 9

### SECTION V: IRB Determination (to be completed by IRB Office)\*

The activities as described in the  $\boxtimes$  submitted protocol and/or  $\boxtimes$  materials and description of activities provided by the investigator,

Do not constitute research with human subjects in accordance with 45 CFR 46 and 21 CFR 50 & 56. IRB approval is not required.

For activities involving decedents and their Protected Health Information (PHI), the conditions as set forth in the Privacy Rule at 45 CFR 164.512(i)(I)(iii), have been met.

- the use or disclosure sought is solely for research on the protected health information of decedents;
- documentation can be provided, at the request of the covered entity, of the death of such individuals; and
- the protected health information for which use or disclosure is sought is necessary for the research purposes.

Authorized IRB Personnel Printed Name: \_Kathleen E. Murphy, PhD, CIP\_\_\_\_\_\_

Authorized IRB Personnel Signature: Kathlan Churgh, AD, CEP

Title: Manager, Social and Behavioral IRB, Northwestern University, Evanston, IL\_\_\_\_\_

Date: \_11-21-2013\_\_\_\_\_

\*If any activities completed were or possibly were not in compliance with federal regulations regarding prior IRB review, please forward the form to the IRB Compliance Manager for review. For example, the investigator reports activities which are already completed but initially required IRB approval.

Page 9 of 9

# L. ACKNOWLEDGEMENT OF ALL FIRST TRIAL PROGRAM DIRECTORS, PROGRAM COORDINATORS, SURGEON CHAMPIONS, AND SURGICAL CLINICAL REVIEWERS

| HOSPITAL NAME                                                                   | RESIDENCY PROGRAM                                   | PROGRAM DIRECTOR                                 | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                               | SURGICAL CLINICAL<br>REVIEWER                       |
|---------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|------------------------|------------------------------------------------|-----------------------------------------------------|
| University of Alabama at<br>Birmingham                                          | University of Alabama Medical<br>Center Program     | John R. Porterfield, MD                          | Regina Lynn Hough      | Mary Hawn, MD                                  | Ashley L Webster<br>Beth Faust                      |
| Mayo Clinic Arizona                                                             | Mayo Clinic Arizona Program                         | Richard J. Gray, MD                              | Carolyn Pence-Smith    | David Etzioni, MD<br>Richard Fowl, MD          | Sharon Black<br>Twila Lobitz<br>Yolanda Nichols     |
| Riverside County<br>Regional Medical Center                                     | Riverside County Regional<br>Medical Center Program | Afshin Molkara, MD                               | Jenni Shieck           | Yong-Kwon Lee, MD                              | Sheila Gilbert                                      |
| Santa Barbara Cottage<br>Hospital                                               | Santa Barbara Cottage<br>Program                    | Jeffrey Gauvin, MD                               | Cynthia Stoddard       | Pamela Lee, MD                                 | Caroline C. Finet                                   |
| Kaiser Permanente Santa<br>Clara                                                | Stanford University Program                         | Marc Melcher, MD, PhD                            | Anita Hagan            | John Stevenson, MD                             | Х                                                   |
| Stanford Hospital and<br>Clinics                                                | Stanford University Program                         | Marc Melcher, MD, PhD                            | Anita Hagan            | David Spain, MD                                | Candy McKinley                                      |
| UCLA Medical Center                                                             | UCLA Medical Center<br>Program                      | Oscar J. Hines, MD                               | Chi Quach              | Oscar Joe Hines, MD                            | Hallie Chung                                        |
| Kaiser Permanente<br>Oakland Medical Center                                     | UCSF (East Bay) Program                             | Terrence H. Liu, MD                              | Martha George          | Olakunle Ajayi, MD<br>Christopher Grimsrud, MD | Ann Conroy                                          |
| UC San Francisco                                                                | University of California (San<br>Francisco) Program | Linda M. Reilly, MD                              | Rachelle Bresnahan     | Mary McGrath, MD                               | Tennille Parsons<br>Yanina Stanislavskaya           |
| Sutter West Bay<br>Hospitals dba CPMC<br>(California Pacific Medical<br>Center) | University of California (San<br>Francisco) Program | Linda M. Reilly, MD                              | Rachelle Bresnahan     | Peter C. Richards, MD                          | Linda Ono<br>Marissa Luber<br>Yali Shu              |
| Kaiser Permanente San<br>Francisco                                              | University of California (San<br>Francisco) Program | Linda M. Reilly, MD                              | Rachelle Bresnahan     | James Constant, MD                             | Millie Barnett                                      |
| Kaiser Foundation<br>Sacramento                                                 | University of California Davis<br>Program           | Joseph Galante, MD                               | Bryan Fandrich, MD     | Damon Herr, MD                                 | Kathryn Unger<br>Margaret Chabot                    |
| University of California<br>Davis Medical Center                                | University of California Davis<br>Program           | Joseph Galante, MD                               | Juanita Braxton        | James Holcroft, MD                             | Anne Marder<br>Kimberly Brink-Capps<br>Roxanne Hyke |
| UC Irvine Medical Center                                                        | University of California Irvine<br>Program          | Matthew O. Dolich, MD                            | Tania Saba             | Ninh Nguyen, MD                                | Sidney Diniz                                        |
| Exempla St. Joseph<br>Hospital                                                  | Exempla Saint Joseph<br>Hospital Program            | John T. Moore, MD<br>Deborah Davis-Merrit,<br>MD | Laurie Cooper          | Margaret Schrieber, MD                         | Jill L. Grivetti<br>Rhonda Simpson                  |
| University of Colorado                                                          | University of Colorado<br>Program                   | Mark R. Nehler, MD                               | Claire Travis          | Robert Meguid, MD<br>David Kuwayama, MD        | Nora Hennecken<br>Sandra Espinoza                   |
| Danbury Hospital                                                                | Danbury Hospital Program                            | Royd Fukumoto, MD                                | Meryl Bennett          | Keith Zuccala, MD                              | Christie Good                                       |

| HOSPITAL NAME                                  | RESIDENCY PROGRAM                                                                         | PROGRAM DIRECTOR               | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                          | SURGICAL CLINICAL<br>REVIEWER                                       |
|------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|------------------------|-------------------------------------------|---------------------------------------------------------------------|
| Saint Mary's Hospital                          | Saint Mary's Hospital Program                                                             | John A. Palesty, MD            | Joan Reeser            | Philip R. Corvo, MD                       | Kim O'Meara<br>Sheila Staib                                         |
| Stamford Hospital                              | Stamford Hospital/Columbia<br>University College of<br>Physicians and Surgeons<br>Program | Kevin Dwyer, MD                | Carla Rennie           | Kevin M. Dwyer, MD                        | Suman Chaudhry                                                      |
| Hartford Hospital                              | University of Connecticut<br>School of Medicine Program                                   | Brian Shames, MD               | Patricia Reilly        | Orlando Kirton, MD                        | Jay Encarnacion                                                     |
| Hospital of Central<br>Connecticut             | University of Connecticut<br>School of Medicine Program                                   | Brian Shames, MD               | Patricia Reilly        | Michael Posner, MD                        | Cynthia Ross-<br>Richardson                                         |
| John Dempsey Hospital                          | University of Connecticut<br>School of Medicine Program                                   | Brian Shames, MD               | Patricia Reilly        | Stephen J. Lahey, MD                      | Jessica Bernard                                                     |
| Saint Francis Hospital<br>and Medical Center   | University of Connecticut<br>School of Medicine Program                                   | Brian Shames, MD               | Patricia Reilly        | Scott Ellner, MD                          | Gail Gruszczynski                                                   |
| George Washington<br>University                | George Washington<br>University Program                                                   | Paul Lin, MD<br>Juliet Lee, MD | Robert Pakan           | Khashayar Vaziri, MD<br>Stanley Knoll, MD | Kara Coullard<br>Christina Junker                                   |
| Christiana Care                                | Christiana Care Health<br>Services Program                                                | Frederick Giberson, MD         | Sandy DelCoglin        | Gerard Fulda, MD                          | Eileen Przybylek<br>Jenny Marowski<br>Jo Ann Beddow<br>Rocco DeMaio |
| Orlando Regional Medical<br>Center             | Orlando Health Program                                                                    | Michael Cheatham, MD           | Joann Whittington      | Matthew Lube, MD                          | Gayle C. Amberson<br>Lisa M Allen                                   |
| UF Health Jacksonville                         | University of Florida College<br>of Medicine- Jacksonville<br>Program                     | Michael Nussbaum, MD           | Patricia Edwards       | Joseph Tepas, MD<br>Michael Nussbaum, MD  | Jhun A Devilla                                                      |
| Tampa General Hospital                         | University of South Florida<br>Morsani Program                                            | John Y. Cha, MD                | Wendy McCrorey         | Victor Velanovich, MD<br>David Smith, MD  | Dena Waskiewicz                                                     |
| Dwight David Eisenhower<br>Army Medical Center | Dwight David Eisenhower<br>Army Medical Center Program                                    | David Kauvar, MD               | Х                      | Dominic Gallo, MD<br>James D. Frizzi, MD  | Clifette Johnson                                                    |
| Emory University<br>Hospital                   | Emory University Program                                                                  | Keith A. Delman, MD            | Susan Ratliff          | John Sweeney, MD                          | Amy Newell<br>Judy Lewis                                            |
| Medical Center of Central<br>Georgia           | Medical Center of Central<br>Georgia/ Mercer University<br>School of Medicine Program     | Benjie Christie, MD            | Irma Miranda           | Kim Thompson, MD                          | Michelle Chapman                                                    |
| Memorial University<br>Medical Center          | Mercer University School of<br>Medicine (Savannah Campus)<br>Program                      | Christopher Senkowski,<br>MD   | Debbie Wells           | Carl Boyd, MD                             | Maureen Davis<br>Sonja Marcey Soeffner                              |
| Queen's Medical Center                         | University of Hawaii Program                                                              | Danny Takanishi, MD            | Gary Belcher           | Kathleen Mah, MD<br>Whitney Limm, MD      | Ruby Adams<br>Stacy H Ujimori<br>Wanda M Muranaka                   |

| HOSPITAL NAME                                          | RESIDENCY PROGRAM                                                         | PROGRAM DIRECTOR                         | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                            | SURGICAL CLINICAL<br>REVIEWER                                                                   |
|--------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| Straub Hospital and<br>Clinic                          | University of Hawaii Program                                              | Danny Takanishi, MD                      | Gary Belcher           | Bradely Sakaguchi, MD<br>Scott Crawford, MD | Kevin Speyer<br>Thomas Yamashita                                                                |
| Kapioloani Medical<br>Center for Women and<br>Children | University of Hawaii Program                                              | Danny Takanishi, MD                      | Gary Belcher           | Richard McCartin, MD<br>Russell Woo, MD     | Deborah A Martyniuk                                                                             |
| Iowa Methodist Medical<br>Center                       | Iowa Methodist General<br>Surgery Program                                 | Richard A. Sidwell, MD                   | Paula Rasmussen        | Frederick Nuss, MD                          | Paul Van Ryswyk                                                                                 |
| Mercy Medical Center-<br>Des Moines                    | Mercy Medical Center- Des<br>Moines Program                               | Charles Goldman, MD                      | Lori Wahman            | Charles Goldman, MD                         | Х                                                                                               |
| University of Iowa<br>Hospitals and Clinics            | University of Iowa Hospitals<br>and Clinics Program                       | William J. Sharp, MD                     | Michael Healy          | Timothy Kresowik, MD                        | Belding-Schmitt Mary<br>Nancy Krutzfield                                                        |
| Carle Foundation<br>Hospital                           | Carle Foundation Hospital<br>Program                                      | Michelle M. Olson, MD                    | Х                      | Kimberly Cradock, MD                        | Jan Bice<br>Lori Fossier                                                                        |
| Northwestern Memorial<br>Hospital                      | McGaw Medical Center of<br>Northwestern University<br>Program             | Jonathan Fryer, MD<br>Shari Meyerson, MD | Leslie McSpadden       | Karl Bilimoria, MD MS                       | Kara J. Nelis<br>Kathryn Paredes<br>Nancy Tomaska                                               |
| Rush University Medical<br>Center                      | Rush University Medical<br>Center Program                                 | Norman L Wool, MD                        | Delores Austin         | Jonathan Myers, MD                          | Patrick O'Brien                                                                                 |
| Memorial Medical Center                                | Southern Illinois University<br>Program                                   | John D. Mellinger, MD                    | Nikki Workman          | Jan Rakinic, MD                             | Laura Antenan                                                                                   |
| OSF St. Francis Medical<br>Center                      | University of Illinois College of<br>Medicine-Peoria Program              | Norman C. Estes, MD                      | Marnie Koeppel         | Norman Estes, MD                            | Gail Sexton<br>Karen Doty<br>Linda Cooper                                                       |
| Indiana University Health<br>(IUH)                     | Indiana University Program                                                | Jennifer Choi, MD                        | Brianne Nickel         | Eugene Ceppa, MD                            | Х                                                                                               |
| IU Health Methodist                                    | Indiana University Program                                                | Jennifer Choi, MD                        | Brianne Nickel         | Christopher Bearden, MD                     | Elizabeth "Betty"<br>Roberts                                                                    |
| St. Vincent Hospital<br>Indianapolis                   | St. Vincent Hospitals and<br>Health Care Center Program                   | Paul Nelson, MD<br>Jonathan Saxe, MD     | Lisa Stuart            | Juliana Meyer, MD                           | Eileen McInnes                                                                                  |
| University of Kansas<br>Hospital                       | University of Kansas School<br>of Medicine Program                        | Kurt Schropp, MD                         | Kelly Dale             | Chris Haller, MD                            | Jaime Davis-Thomas                                                                              |
| University of Kentucky                                 | University of Kentucky<br>College of Medicine Program                     | Eric D. Endean, MD                       | Pamela Creech          | Patrick C. McGrath, MD                      | Devauna Riley<br>Roseanna Adair                                                                 |
| Ochsner Clinic<br>Foundation                           | Ochsner Clinic Foundation<br>Program                                      | George M. Fuhrman, MD                    | Denise Pinkston        | Х                                           | Angela Teagle<br>Brenda Falanga                                                                 |
| Baystate Medical Center                                | Baystate Medical Center/Tufts<br>University School of Medicine<br>Program | Neal Seymour, MD                         | Joy Isotti             | Jay Kuhn, MD                                | Christine Anderson<br>Jane Stauber-Wilson<br>Jodi Kashouh<br>Linda Burgess<br>Patricia Humiston |

| HOSPITAL NAME                           | RESIDENCY PROGRAM                                                               | PROGRAM DIRECTOR                                                                              | PROGRAM<br>COORDINATOR              | SURGEON CHAMPION                              | SURGICAL CLINICAL<br>REVIEWER                                                            |
|-----------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|
| Beth Israel Deaconess<br>Medical Center | Beth Israel Deaconess<br>Medical Center Program                                 | Tara Kent, MD                                                                                 | Kelly Barnes                        | Richard Whyte, MD                             | Mary Beth Cotter<br>Mary F. Ward<br>Valentina Lavarias                                   |
| Brigham and Womens<br>Faulkner Hospital | Brigham and Women's<br>Hospital Program                                         | Douglas S. Smink, MD,<br>MPH                                                                  | Pardon R Kenney, MD                 | Pardon Kenney, MD                             | Alexandra Koffman<br>Evelyn Haas<br>Felix O Akinbami<br>Jill Steinberg<br>Tess Panizales |
| Brigham and Womens<br>Hospital          | Brigham and Women's<br>Hospital Program                                         | Douglas S. Smink, MD,<br>MPH                                                                  | Sara Broughton Herd                 | Dennis Orgill, MD                             | Evelyn Haas<br>Jill Steinberg<br>Maria Theresa (Tess)<br>Panizales                       |
| Lahey Hospital and<br>Medical Center    | Lahey Clinic General Surgery<br>Program                                         | Harold Welch, MD                                                                              | Susan Downer                        | Rocco Ricciardi, MD                           | Lynne Crawford<br>Nancy Manfredi<br>Therese Golden                                       |
| Massachusetts General<br>Hospital       | Massachusetts General<br>Hospital Program                                       | John T. Mullen, MD                                                                            | Barbara Wolf                        | Matthew Hutter, MD                            | Kathy Swierzewski<br>Lynn Devaney<br>Shaun Sutcliffe                                     |
| Newton-Wellesley<br>Hospital            | Massachusetts General<br>Hospital Program                                       | John T. Mullen, MD                                                                            | Sheila Partridge, MD                | Frederick Millham, MD<br>Sheila Partridge, MD | Linda Burr                                                                               |
| Tufts Medical Center                    | Tufts Medical Center Program                                                    | Jeffrey T. Cooper, MD                                                                         | Annette Cerulli                     | William C. Mackey, MD                         | Rita Estey                                                                               |
| Umass Memorial Health<br>Care           | University of Massachusetts<br>Program                                          | Anne Larkin, MD                                                                               | Jeannine Bottis                     | W. Brian Sweeney, MD                          | Gail Butcher<br>Joanne Pascarelli-                                                       |
| John Hopkins Hospital                   | John Hopkins University<br>Program                                              | Pamela A. Lipsett, MD                                                                         | L. Robin Newcomb<br>Kimberly Duncan | Martin Makary, MD                             | Jennifer Castellani<br>Regina Morton                                                     |
| Sinai Hospital of<br>Baltimore          | Sinai Hospital of Baltimore<br>Program                                          | Mark Katlic, MD                                                                               | Jean Sturdivant                     | Thomas Genuit, MD                             | Karen Sweeney<br>Mary L Garland                                                          |
| University of Maryland                  | University of Maryland                                                          | Stephen M Kavic, MD                                                                           | Sarah Kidd-Romero                   | Х                                             | Lewelyn Cuevas<br>Cariaga                                                                |
| Maine Medical Center                    | Maine Medical Center<br>Program                                                 | James F. Whiting, MD                                                                          | Jennifer Perros                     | Brad Cushing, MD                              | Kimberly A. Newman<br>Robert Cormier                                                     |
| Spectrum Health<br>Butterworth          | Grand Rapids Medical<br>Education Partners/Michigan<br>State University Program | Mathew Chung, MD<br>Stanley Sherman, MD<br>Paul Kemmeter, MD<br>Jeremiah Awori<br>Hayanga, MD | Marc Schlatter, MD                  | Ashraf Mansour, MD                            | Stephanie Laird                                                                          |
| Henry Ford Hospital                     | Henry Ford Hospital/Wayne<br>State University Program                           | Ann Woodward, MD                                                                              | Grace Pacini                        | J.H. Patton, MD                               | Jennifer Ritz<br>Misty Desimpelaere<br>Rita Straub                                       |

| HOSPITAL NAME                             | RESIDENCY PROGRAM                                         | PROGRAM DIRECTOR        | PROGRAM<br>COORDINATOR | SURGEON CHAMPION        | SURGICAL CLINICAL<br>REVIEWER                                               |
|-------------------------------------------|-----------------------------------------------------------|-------------------------|------------------------|-------------------------|-----------------------------------------------------------------------------|
| Sparrow Hospital                          | Michigan State University<br>Integrated Program           | Michael K. McLeod, MD   | Lisa Rendall           | Michael McLeod, MD      | Anita Kassel<br>Jori Smith<br>MaryAnn Taylor                                |
| St. Joseph Mercy<br>Hospital              | St Joseph Mercy Hospital<br>Program                       | Edward Kreske, MD       | Erin Madden            | Wallace Arneson Jr., MD | James Vandewarker<br>Sally A. Knight                                        |
| Bronson Methodist<br>Hospital             | Western Michigan University<br>School of Medicine Program | Earl Norman, MD         | Cynthia Shattuck       | Mark Dittenbir, MD      | Deborah Rozewicz<br>Erica Nagra                                             |
| Beaumont Health System<br>(Grosse Pointe) | William Beaumont Hospital<br>Program                      | Felicia A. Ivascu, MD   | Larry Lloyd, MD        | Larry Lloyd, MD         | Julie Pelton<br>Karen Reeder                                                |
| William Beaumont<br>Hospital              | William Beaumont Hospital<br>Program                      | Felicia A. Ivascu, MD   | Kathy Janowski         | Robert Welsh, MD        | Catherine Shuell<br>Elizabeth Gates<br>Julie Pelton<br>Patricia Ciofu-Smith |
| Hennepin County Medical<br>Center         | Hennepin County Medical<br>Center Program                 | Joan M Van Camp, MD     | Phyllis Squiers        | Jon Krook, MD           | Megan Oberle<br>Sheri Dodd                                                  |
| Mayo Clinic Methodist                     | Mayo Clinic College of<br>Medicine (Rochester)<br>Program | Stephanie F. Heller, MD | Judith Cook            | х                       | Diane Tyndale<br>Mary Roubik<br>Sharon Nehring                              |
| Mayo Clinic Saint Marys<br>Hospital       | Mayo Clinic College of<br>Medicine (Rochester)<br>Program | Stephanie F. Heller, MD | Judith Cook            | Sean Dowdy, MD          | Kim Giehtbrock<br>Sharon Nehring                                            |
| University of Minnesota<br>Medical Center | University of Minnesota<br>Program                        | Jeffrey G. Chipman, MD  | Cathryn Larson         | Mary Kwaan, MD          | Alyssia Mills-Hokenson<br>Stacy Jo Carda                                    |
| Saint Louis University                    | St Louis University School of<br>Medicine Program         | Catherine Wittgen, MD   | Carol Kamp             | Donald Jacobs, MD       | Martha Antal                                                                |
| University of Missouri -<br>Columbia      | University of Missouri-<br>Columbia Program               | Arthur Rawlings, MD     | Bethany Bennett        | Х                       | Linda Hanley                                                                |
| Truman Medical Center                     | University of Missouri-Kansas<br>City Program             | Mark Friedell, MD       | Х                      | Mark Friedell, MD       | Х                                                                           |
| Barnes Jewish West<br>County Hospital     | Washington University/B-<br>JH/SLCH Consortium<br>Program | Paul Wise, MD           | Michelle Tuetken       | Sam Bhayani, MD         | Mary Johnson                                                                |
| Barnes-Jewish Hospital                    | Washington University/B-<br>JH/SLCH Consortium<br>Program | Paul Wise, MD           | Michelle Tuetken       | Bruce Hall, MD          | Carmen Broccard<br>Louise H. Schrama<br>Mitzi Hirbe                         |
| Carolinas Medical Center                  | Carolinas Medical Center<br>Program                       | John M. Green, MD       | Jessica Roof           | Michael H. Thomason, MD | Meredith Moore                                                              |
| Duke University Hospital                  | Duke University Hospital<br>Program                       | John Migaly, M.D.       | Tammy Watson           | Christopher Mantyh, MD  | Monica R Walter<br>Pat Tucker<br>Yvonne Acker                               |
| Womack Army Medical<br>Center             | Dwight David Eisenhower<br>Army Medical Center Program    | David Kauvar, MD        | Raymond Sanders        | Steven Khoo, MD         | Х                                                                           |

| HOSPITAL NAME                                                       | RESIDENCY PROGRAM                                         | PROGRAM DIRECTOR        | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                                      | SURGICAL CLINICAL<br>REVIEWER                                                          |
|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                     |                                                           |                         |                        |                                                       |                                                                                        |
| New Hanover Regional<br>Medical Center                              | New Hanover Regional<br>Medical Center Program            | Thomas Clancy, MD       | Kathy Radley           | William Hope, MD                                      | Pam Moore                                                                              |
| UNC Hospitals                                                       | University of North Carolina<br>Hospitals Program         | Michael O. Meyers, MD   | Kathie Patterson       | Mark Koruda, MD                                       | Lynn Flagg<br>Marcia Prince                                                            |
| Vidant Medical Center                                               | Vidant Medical Center/East<br>Carolina University Program | Claudia Goettler, MD    | Sue West               | Claudia Goettler, MD                                  | Х                                                                                      |
| Wake Forest Baptist<br>Health                                       | Wake Forest University<br>School of Medicine Program      | John Stewart, MD        | Mollie Draughon        | Perry Shen, MD                                        | Mary Ann Mealor<br>Pamela Eversole                                                     |
| Alegent Creighton Health,<br>Creighton University<br>Medical Center | Creighton University Program                              | Jeffrey T. Sugimoto, MD | Rhonda Peavy           | Sumeet Mittal, MD                                     | Christina Graf<br>Lisa Schuster                                                        |
| Nebraska Medical Center                                             | University of Nebraska<br>Medical Center Program          | Chandrakanth Are, MD    | Danielle Brown         | Eugene Waltke, MD                                     | Andrea Paxton<br>Jocelyn Pearson                                                       |
| Dartmouth-Hitchcock<br>Medical Center                               | Dartmouth-Hitchcock Medical<br>Center Program             | Paul Kispert, MD        | Karen Lee              | Philip Goodney, MD                                    | Erin L. Boettcher<br>Mary Menduni                                                      |
| Morristown Medical<br>Center                                        | Atlantic Health System<br>Program                         | Eric L. Lazar, MD       | Catherine Nitto        | Brian Siegel, MD                                      | Joanne Pawar<br>Patricia Vorel                                                         |
| Cooper University<br>Hospital                                       | Cooper Medical School<br>Program of Rowan University      | James B. Alexander, MD  | Cathy Cooney           | Francis Spitz, MD                                     | Catherine Cristofalo<br>David Spurrier<br>Dawn Stepnowski<br>Mary Buddle               |
| Newark Beth Israel<br>Medical Center                                | Monmouth Medical Center<br>Program                        | Mark K. Hirko, MD       | Donna Turovac          | Adam Kopelan, MD                                      | Constance McKoy-Holt                                                                   |
| Hackensack University<br>Medical Center                             | Rutgers New Jersey Medical<br>School Program              | Michael Shapiro, MD     | Michelle Jimenez       | Massimo Napolitano, MD                                | Inia Estima<br>Magdalena Sudol                                                         |
| University Hospital -<br>Rutgers                                    | Rutgers New Jersey Medical<br>School Program              | Michael Shapiro, MD     | Michelle Jimenez       | Aziz Merchant, MD<br>Adam Fox, MD<br>Michael Curi, MD | Kimberly B Nester<br>Roxanne M Poon                                                    |
| MetroHealth Medical<br>Center                                       | Case Western Reserve<br>University Program                | Jeremy Lipman, MD       | Jennifer Lastic        | Natalie Joseph, MD                                    | Judi Spath<br>Maria Opris                                                              |
| Cleveland Clinic                                                    | Cleveland Clinic Foundation<br>Program                    | Allan E. Siperstein, MD | Janine Keough          | Allan Siperstein, MD                                  | Jeanne Shewchik<br>Meryl Insler<br>Susan Bohne<br>Susan M. Rydzinski<br>Nancy Anzlovar |
| Ohio State University<br>Wexner Medical Center                      | Ohio State University Wexner<br>Medical Center Program    | Mark Arnold, MD         | Beth Hanson            | Steven Steinberg, MD                                  | Erica Porter<br>Judi Michalek                                                          |
| The Jewish Hospital                                                 | The Jewish Hospital Program                               | Carrie Ogg, MD          | Amy Broughton          | S. Russell Vester, MD<br>Cari Ogg, MD                 | Х                                                                                      |

| HOSPITAL NAME                                       | RESIDENCY PROGRAM                                                         | PROGRAM DIRECTOR             | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                                        | SURGICAL CLINICAL<br>REVIEWER               |
|-----------------------------------------------------|---------------------------------------------------------------------------|------------------------------|------------------------|---------------------------------------------------------|---------------------------------------------|
| Good Samaritan -<br>TriHealth                       | TriHealth (Good Samaritan<br>Hospital) Program                            | Kevin J. Grannan, MD         | Teresa Arnold          | George Kerlakian, MD                                    | Donna M Werth                               |
| The Christ Hospital                                 | University of Cincinnati<br>Medical Center/College of<br>Medicine Program | Bradley R. Davis, MD         | Gilda Young            | Ian Paquette, MD                                        | Emily Gatch<br>Priyanka Prakash             |
| Kaiser Permanente<br>Sunnyside                      | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Waleed L. Lutfiyya, MD                                  | Andrea M Calarco<br>Juliann Breen           |
| Legacy Emanuel Medical<br>Center                    | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Nathan Kemalyan, MD                                     | Becky Swick                                 |
| Legacy Good Samaritan<br>Medical Center             | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Blayne Standage, MD                                     | Х                                           |
| Oregon Health and<br>Science University<br>Hospital | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Brett Sheppard, MD                                      | Fouad Attia                                 |
| Providence Portland<br>Hospital                     | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Karen Zink, MD<br>Kelvin Yu, MD                         | Annette Bruer<br>Kristina Loudon            |
| Providence St. Vincent<br>Hospital                  | Oregon Health & Science<br>University Program                             | Karen Brasel, MD             | Robin Alton            | Ali Khaki, MD                                           | Annette Bruer<br>Scott Kato                 |
| Abington Memorial<br>Hospital                       | Abington Memorial Hospital<br>Program                                     | Kenric M. Murayama,<br>MD    | Rebecca Augustine      | John Kukora, MD                                         | Cynthia Brophy<br>Karen Beem                |
| Hahnemann University<br>Hospital                    | Drexel University/Hahnemann<br>University Hospital Program                | Andres E. Castellanos,<br>MD | Allison Stein          | David Stein, MD                                         | Patricia Fisher                             |
| Robert Packer Hospital                              | Guthrie/Robert Packer<br>Hospital Program                                 | Thomas J. VanderMeer,<br>MD  | Laura Warner           | Thomas VanderMeer, MD                                   | Laurie Kinsman<br>Nicole Teeter             |
| Hospital of the University<br>of Pennsylvania       | Hospital of the University of<br>Pennsylvania Program                     | Jon B. Morris, MD            | Laura Huth             | Rachel Kelz, MD                                         | Susan Kreider                               |
| Penn State Milton S<br>Hershey Medical Center       | Penn State Milton S Hershey<br>Medical Center Program                     | David Han, MD                | Jessica Moyer          | Matthew Indeck, MD                                      | Gail Ortenzi<br>Linda Burgess               |
| Temple University<br>Hospital                       | Temple University Hospital<br>Program                                     | Amy J. Goldberg, MD          | Kiesba Herrin          | Eric Choi, MD                                           | Cynthia Brophy<br>Kathleen Campbell         |
| Thomas Jefferson<br>University Hospital             | Thomas Jefferson University<br>Program                                    | Karen Chojnacki, MD          | Donna Guinto           | Scott Cowan, MD<br>Stacey Milan, MD<br>Herbert Cohn, MD | Randi Altmark                               |
| Pennsylvania Hospital                               | University of Pennsylvania<br>Program                                     | Jon B. Morris, MD            | Laura Huth             | Dahlia Sataloff, MD                                     | Jessica Stevens<br>John Regan               |
| UPMC Presbyterian<br>Hospital                       | UPMC Medical Education<br>Program                                         | Kenneth K. Lee, MD           | Maggie Mrozinski       | Kevin O. Garrett, MD                                    | Denise (Dee) Burkhart                       |
| York Hospital                                       | York Hospital Program                                                     | Richard B. Damewood,<br>MD   | Mark Neal              | John Castronuovo, MD                                    | Kelly Gemmill<br>Pamela Emig<br>Susan Diehl |
| Rhode Island Hospital                               | Brown University Program                                                  | David T. Harrington, MD      | Pamela Richardson      | David Harrington, MD                                    | Х                                           |

| HOSPITAL NAME                                             | RESIDENCY PROGRAM                                                        | PROGRAM DIRECTOR                     | PROGRAM<br>COORDINATOR | SURGEON CHAMPION                             | SURGICAL CLINICAL<br>REVIEWER                                            |
|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|------------------------|----------------------------------------------|--------------------------------------------------------------------------|
| The Miriam Hospital                                       | Brown University Program                                                 | David T. Harrington, MD              | Pamela Richardson      | David Coultier, MD                           | Mary Valencia<br>Pat Sullivan                                            |
| Medical University of<br>South Carolina                   | Medical University of South<br>Carolina Program                          | Chris Streck, MD                     | Sue Wetherholt         | Karl Byrne, MD                               | Christie Merritt<br>Deborah R. Lorris                                    |
| Bristol Regional Medical<br>Center                        | East Tennessee State<br>University Program                               | William Browder, MD                  | Julie B. Simerly       | Benjamin S. Scharfstein,<br>MD               | Leilani M Evans                                                          |
| University of Tennessee<br>Medical Center at<br>Knoxville | University of Tennessee at<br>Knoxville Program                          | Brian Daley, MD                      | Ginger Miya            | Blaine Enderson, MD                          | Debra A Vittetoe                                                         |
| Erlanger Hospital                                         | University of Tennessee<br>College of Medicine at<br>Chattanooga Program | Heath Giles, MD                      | Cindy Schultz Rudolph  | Joseph Cofer, MD                             | Amy Harvey<br>Patricia Spangler                                          |
| Baptist Memorial Hospital                                 | University of Tennessee<br>Program                                       | Frances E. Pritchard, MD             | Cynthia Tooley         | Stephen Behrman, MD                          | Jackie Cibulka<br>Kay Loyd                                               |
| Methodist Healthcare                                      | University of Tennessee<br>Program                                       | Frances E. Pritchard, MD             | Cynthia Tooley         | Alexander Mathew, MD<br>Martin D Fleming, MD | Bobbie Hale                                                              |
| Regional Medical Center                                   | University of Tennessee<br>Program                                       | Frances E. Pritchard, MD             | Cynthia Tooley         | George O. Maish, MD                          | Sandy Long                                                               |
| St. Francis Hospital -<br>Memphis                         | University of Tennessee<br>Program                                       | Frances E. Pritchard, MD             | Cynthia Tooley         | Joshua Katz, MD                              | Cindy Wylie                                                              |
| St. Thomas West Hospital                                  | Vanderbilt University Program                                            | John Tarpley, MD                     | Stephanie Burnham      | Raymond S. Martin, MD                        | Х                                                                        |
| Vanderbilt Medical Center                                 | Vanderbilt University Program                                            | John Tarpley, MD<br>Kyla Terhune, MD | Stephanie Burnham      | Oscar Guillamondegui, MD                     | Barbara Martin<br>Sherree Levering                                       |
| John Peter Smith- Tarrant<br>County                       | Baylor University Medical<br>Center Program                              | Robert Goldstein, MD                 | Sandy Fishman          | David McReynolds, MD                         | Brenda Ellis<br>Julie Chenoweth                                          |
| Baylor University Medical<br>Center                       | Baylor University Medical<br>Center Program                              | Robert Goldstein, MD                 | Sandy Fishman          | Ernest Franklin, MD                          | Jacqueline Wohadlo                                                       |
| Houston Methodist                                         | Houston Methodist Program                                                | Sherilyn Gordon<br>Burroughs, MD     | Myriam Gandy           | Barbara Bass, MD                             | Х                                                                        |
| Scott and White<br>Healthcare                             | Scott and White Healthcare<br>Program                                    | J. Scott Thomas, MD                  | Lynn Botts             | Harry T. Papaconstantinou,<br>MD             | Bonnie Hodges<br>Christie C Cummings<br>Glenda Goolsby<br>Nancy A Bowman |
| Memorial Hermann<br>Southwest                             | University of Texas at<br>Houston Program                                | Donald P. Lesslie, DO                | Angel Lopez            | Tammy Lee, MD<br>George Peterkin, MD         | Х                                                                        |
|                                                           |                                                                          |                                      |                        |                                              |                                                                          |
| HOSPITAL NAME                                             | RESIDENCY PROGRAM                                                        | PROGRAM DIRECTOR                     | PROGRAM                | SURGEON CHAMPION                             | SURGICAL CLINICAL                                                        |

|                                              |                                                                        |                            | COORDINATOR        |                                            | REVIEWER                                                                                   |
|----------------------------------------------|------------------------------------------------------------------------|----------------------------|--------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|
| University Hospital - San<br>Antonio         | University of Texas Health<br>Science Center at San<br>Antonio Program | Daniel L. Dent, MD         | Eileen M. Kleffner | Ronald M. Stewart, MD                      | Kristi Hill- Herrera                                                                       |
| University of Texas M.D.<br>Anderson         | University of Texas at<br>Houston Program                              | Donald P. Lesslie, DO      | Angel Lopez        | X                                          | Annie Z. Philip<br>Constance R Curtis<br>Lavinia Zanaj<br>Maria VictoriaTiu<br>Melony Levy |
| Hermann Memorial TMC                         | University of Texas at<br>Houston Program                              | Donald P. Lesslie, DO      | Angel Lopez        | Todd Wilson, MD<br>Erik Wilson, MD         | Ira Martin<br>Lucia Flores<br>Regina Essex                                                 |
| University of Texas<br>Medical Branch        | University of Texas Medical<br>Branch Program                          | Kristene Gugliuzza, MD     | Erica Ruiz         | Dennis Gore, MD                            | Michelle Gonzalez<br>Theresa Speich                                                        |
| Parkland Hospital                            | University of Texas<br>Southwestern Medical School<br>Program          | Daniel J. Scott, MD        | Lisa Bailey        | Jennifer Rabaglia, MD<br>Michael Choti, MD | Emily J. Kent-Street<br>Reina Duhon                                                        |
| University Hospital UT<br>Southwest          | University of Texas<br>Southwestern Medical School<br>Program          | Daniel J. Scott, MD        | Lisa Bailey        | Х                                          | Nisha Jose                                                                                 |
| Intermountain Medical<br>Center              | University of Utah Program                                             | Daniel Vargo, MD           | Janell Clements    | Mark Ott, MD<br>Ute Gawlick, MD            | Brett Bulloch                                                                              |
| University of Utah<br>Hospital               | University of Utah Program                                             | Daniel Vargo, MD           | Lori Bybee         | Robert Glasgow, MD                         | Judy Larsen<br>Karie Cluff<br>Linchee Cheong<br>Natalie Turner                             |
| Inova Fairfax Hospital                       | Inova Fairfax Program                                                  | Jonathan Dort, MD          | Diann Carreker     | H. David Reines, MD                        | Jean Donovan                                                                               |
| Naval Medical Center<br>Portsmouth, Virginia | Naval Medical Center<br>(Portsmouth) Program                           | Angela S. Earley, MD       | Dovie I Loud       | Robert Strange, MD                         | Laurie Erskine                                                                             |
| University of Virginia                       | University of Virginia Program                                         | Bruce D. Schirmer, MD      | Kristen Dudley     | Traci Hedrick, MD<br>John Hanks, MD        | Beth Turrentine<br>Lynn Murray                                                             |
| Winchester Medical<br>Center                 | Virginia Commonwealth<br>University Program                            | Brian J. Kaplan, MD        | Cindi Phares       | Erich Bruhn, MD                            | Edward Damico                                                                              |
| Carilion Roanoke<br>Memorial Hospital        | Virginia Tech Carilion School<br>of Medicine Program                   | Charles Chuck Paget,<br>MD | Tina Toms          | Sandy L. Fogel, MD                         | Debbie Copening<br>James Jones<br>Lisa Turner<br>Patti Shorner                             |
| Fletcher Allen Health<br>Care                | University of Vermont/<br>Fletcher Allen Health Care<br>Program        | Julie Adams, MD            | Diantha Langmaid   | Paul Penar, MD                             | Brenda Murphy<br>Joanne Rheaume<br>Joey Larson                                             |
|                                              |                                                                        |                            |                    |                                            |                                                                                            |
| HOSPITAL NAME                                | RESIDENCY PROGRAM                                                      | PROGRAM DIRECTOR           | PROGRAM            | SURGEON CHAMPION                           | SURGICAL CLINICAL                                                                          |

|                                       |                                                  |                                        | COORDINATOR     |                                         | REVIEWER                                                                 |
|---------------------------------------|--------------------------------------------------|----------------------------------------|-----------------|-----------------------------------------|--------------------------------------------------------------------------|
| Gundersen Lutheran<br>Medical Center  | Gunderson Lutheran Medical<br>Foundation Program | Benjamin T. Jarman, MD                 | Colette O'Heron | Travis Smith, MD                        | Julie Trussoni<br>Pam Lambert                                            |
| University of Washington<br>Hospitals | University of Washington<br>Program              | Karen Horvath, MD<br>Lisa McIntyre, MD | Gina Coluccio   | Zoe Parr, MD<br>David Flum, MD          | Alex Ruiz<br>Joshua Matlock                                              |
| University of Wisconsin               | University of Wisconsin<br>Program               | Eugene Foley, MD                       | Mara Snyder     | Gregory D. Kennedy, MD                  | Barbara Braunger<br>Karen Armstrong                                      |
| Meriter Hospital                      | University of Wisconsin<br>Program               | Eugene Foley, MD                       | Mara Snyder     | Jacquelynn Arbuckle, MD                 | Loretta Herfel<br>Wendy L. McManners                                     |
| West Virginia University              | West Virginia University<br>Program              | Jon Cardinal, MD                       | Linda Shaffer   | Matthew Loos, MD<br>Richard Vaughan, MD | Brittany L Brooks<br>Keri L. Orlando<br>Michael E Jude<br>Stephanie Kish |